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Abstract

The Measurement of a Lepton-Lepton Electroweak Reaction (MOLLER) exper-

iment, approved and scheduled to be conducted at the Thomas Jefferson National

Accelerator Facility (JLab), aims to provide a high-precision measurement of the

parity-violating asymmetry in the scattering of longitudinally polarized electrons off

an unpolarized liquid hydrogen target. Utilizing an 11 GeV upgraded beam, the

MOLLER experiment will measure the asymmetry with a precision of 2.4% at an

average Q2 of 0.0056 GeV2. This experiment is expected to probe new physics be-

yond the Standard Model of particle physics and provide significant new details on

the electroweak world, particularly the weak mixing angle.

To achieve the expected precision, corrections must be applied to the Møller signal

for background processes characterized by background asymmetries and fractional

dilution factors. Significant contributions to these experimental signal corrections

come from pion asymmetries and pion dilution factors, which will be measured using

a dedicated pion detector system. The design, development, and prototyping of the

pion detector system for the MOLLER experiment are the primary objectives of

this thesis. To confirm the effectiveness of the detector system, the outcomes from

simulations, cosmic testing carried out at the University of Manitoba, and beam

testing carried out at MAMI B microtron in Mainz, Germany, will be compared.

Furthermore, this thesis introduces Bayesian analysis as a novel approach for ap-

plying non-experimental signal corrections to experimental values. Serving as a com-

plement to the commonly used frequentist methods, Bayesian analysis is explored

for its potential to refine experimental results. By employing Bayesian analysis, the
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accuracy of corrections applied post-measurement is aimed to be enhanced, thereby

improving the overall precision of the MOLLER experiment. The benefits and im-

plications of using Bayesian analysis for theoretical corrections in Parity-Violating

Electron Scattering (PVES) experiments are thoroughly examined.

The results provided in this work emphasize the importance of fully understand-

ing and controlling the parity-violating and parity-conserving asymmetries for pions

to achieve the required precision in the MOLLER experiment. The effectiveness of

the MOLLER experiment and its potential to improve our understanding of the elec-

troweak interaction and the Standard Model are significantly affected by the results

of this research, which includes the development of the pion detector system and the

study of Bayesian analysis for non-experimental signal corrections.
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Chapter 1

Introduction

Parity-Violating Electron Scattering (PVES) experiments have provided a broad

knowledge of electroweak interactions, nucleon structure, and weak force properties.

This chapter discusses the significance of PVES experiments, with an emphasis on

the MOLLER experiment as a promising initiative. To facilitate navigation through

the dissertation, a document roadmap is provided at the end of this chapter.

1.1 Overview of Parity Violation in Electron Scat-

tering

The Standard Model of particle physics is the main model that describes funda-

mental particles, their interactions and their symmetries. The most relevant force and

symmetry to this research are the weak force and parity. Additionally, one class of

low-energy measurements of particular interest to us involves scattering longitudinally

polarized electrons from unpolarized targets. When a longitudinally polarized elec-

tron beam is scattered off an unpolarized target, it can interact electromagnetically by

exchanging a photon and weakly by exchanging a Z0 boson. Electromagnetic interac-

tions conserve parity, while electroweak interactions violate it. In fact, among the four

fundamental interactions, the only one that violates parity is the weak interaction [1].

Parity violation is observed due to the interference between electromagnetic and weak
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components of the electroweak interactions [2]. It can be measured by comparing the

cross sections for left- and right-handed electrons scattered from unpolarized targets.

This asymmetry can be written as:

APV =
σR − σL
σR + σL

, (1.1)

where σR and σL are the cross sections for incident right-handed and left-handed

electrons, respectively. Through this measurement, the parameters of the Standard

Model, especially the couplings of the Z boson, can be precisely determined [3]. Addi-

tionally, it allows for exploring new parity-violating interactions beyond the Standard

Model [4] and enables the accurate study of nuclear properties [5]. A number of novel

experimental techniques have been developed to measure small asymmetries; the ex-

periments utilizing these techniques will be reviewed.

In 1978, Prescott et al. published the first observation of parity violation in elec-

tron scattering through the pioneering E122 experiment conducted at the Stanford

Linear Accelerator Centre (SLAC) [6]. This marked the establishment of the field of

PVES. This experiment measured parity violation in the inelastic scattering of longi-

tudinally polarized electrons from deuterium and hydrogen targets. The asymmetry

measured was a small fraction of the cross-section, 10−4. Experimental improvements

have been necessary to measure asymmetry with this precision, some of which are

ongoing. Developing a polarized electron source based on photoemission from GaAs

was the most important. The beam’s helicity could be reversed without significantly

impacting the source’s intensity or the beam’s other characteristics, such as position,

angle, or energy. Also, a set of precision beam monitors needed to be developed to en-

sure the beam was precisely reversed. Following the Prescott experiment, two PVES

experiments [7],[8], utilizing nuclei as targets, were conducted. These experiments

aimed to measure even smaller asymmetries and then assess the Standard Model pre-

dictions. These experiments will be referred to as Generation I PVES experiments.

In 1989, the question of the role of strange quarks in the nucleon was raised by

the appearance of the spin crisis [9]. Data on the proton’s spin-structure functions

showed that the proton’s spin was not simply the sum of the spins of the valence
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quarks [10]. In addition, PVES was described as a useful method for determining the

strangeness content of nucleon elastic form factors. As a result, the Generation II

PVES experiments, conducted across four programs in three labs, came next. SAM-

PLE in the MIT Bates laboratory [11], HAPPEX at JLab [12], G0 at JLab [13], and

A4 program at Mainz [14] were the experiments.

The success of the strange form factor program laid the groundwork for a series

of more challenging experiments, advancing the precision of Standard Model testing.

Examples include SLAC E158 [15], which measured the weak mixing angle in Møller

scattering, Qweak at JLab [16], which determined the weak charge of the proton, and

the PREx experiment [17], which used PVES on 208Pb to calculate the charge radius

of the neutron distribution. These experiments along with PREx-II [18] and CREx

measurements [19] are Generation III PVES experiments.

The P2 experiment at Mainz [20], the MOLLER [21], and the SoLID experiments

at JLab [22] are among a number of more challenging Generation IV PVES exper-

iments that have been proposed. These experiments will push the boundaries of

how precisely and how small an asymmetry can be measured. Figure 1.1 provides a

summary of the precision of the various PVES experiments.

Overall, the advancements in PVES experiments have improved our knowledge

of parity violation and the fundamentals of particle dynamics. Among PVES ex-

periments, the MOLLER experiment, which holds significant potential for probing

the fundamental physics of electron scattering, will be the focus of this research. To

better understand its significance, the physics motivation behind this experiment is

explored in the next section.

1.2 Physics Motivation

The motivation of the MOLLER experiment [21] is searching for new dynam-

ics beyond the Standard Model of electroweak interactions from low energy levels

(100 MeV) to high energy levels (multi-TeV). MOLLER will measure parity-violating

asymmetry in the scattering of longitudinally polarized electrons from unpolarized

target electrons to an accuracy of 2.4% using an 11 GeV beam in Hall A at Jlab. In

3



Figure 1.1: Overview of past and future PVES experiments at SLAC, Bates, Mainz,
and Jlab [20]. The horizontal axis is the measured value of the asymmetry (APV ).
The vertical axis is the total experimental uncertainty (δ(APV )). The diagonal lines
show the fractional uncertainty in the measurements (0.1%-100%).

Møller scattering, the name was given to electron-electron scattering; as a result of the

interference between the photon and Z0 boson exchange, parity-violating asymmetry

is directly proportional to the weak charge of the electron (Qe
W ) by the following

formula

APV = mE
GF√
2πα

4sin2(θ)

(3 + cos2(θ))2
Qe

W = mE
GF√
2πα

2y(1− y)

1 + y4 + (1− y)4
Qe

W , (1.2)

where α is the fine structure constant, GF is the Fermi constant, m is the mass of

the electron, θ is the scattering angle in the center of mass frame, y = 1 − E′

E
is the

fractional energy loss of the incident electron with E and E ′ the energy before and

after scattering. Finally, Qe
W is related to the electroweak mixing angle (θW ),

Qe
W = 1− 4sin2(θW ). (1.3)

The relation between the weak charge of the electron and the electroweak mixing

4



angle is verified by SLAC experiment E158 [15] as the first experiment using Møller

scattering to measure parity-violating asymmetry. MOLLER proposes to measure

this quantity using Møller scattering with more than a factor of five improvements in

fractional precision. The prediction for measured parity-violating asymmetry in the

MOLLER experiment is 33 ppb with a total uncertainty of 0.8 ppb to achieve 2.4%

accuracy in the Qe
W measurement. Applying higher-order loop radiative corrections

[23] causes a dependency of Qe
W to the energy scale of the measurement experiment

(µ). The weak mixing angle in terms of energy scale is compared for some experiments

in Figure 1.2. The plot shows the anticipated accuracy of the MOLLER experiment

Figure 1.2: Precise measurements of the weak mixing angle versus the energy scale
are shown as red dots with error bars; the blue line shows the theoretical prediction
of the weak mixing angle in the Standard Model as a function of energy scale (µ) and
the black error bars show the uncertainty of the measurements. The existing measure-
ments are from atomic parity violation (QAPV

W ) [24], Qweak experiment (Qp
W ) [16],

SLAC E-158 (Qe
W ) [15], NuTeV experiment (NuTev) [25], and Z0 pole asymmetries

(LEP + SLC) [26]. The proposed MOLLER measurement [21] is shown, and the
central value of the proposed error bar is the nominal Standard Model prediction.

within the broader context of past and proposed experiments, highlighting its poten-

tial to advance our understanding of electroweak interactions.

Building on this foundation, there are two main aspects to the physics motivation of
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the MOLLER experiment:

1. Ranging from low energy levels (100 MeV) to high energy levels

(multi-TeV):

At low energies, effective four-fermion interactions, represented by the ratio

Λ/g, are used to characterize new neutral current interactions. The interac-

tion strength is denoted by g, and Λ denotes the scale of the recently intro-

duced dynamics. The measurement of the parity-violating asymmetry in the

MOLLER experiment with 2.4% uncertainty is sensitive to interaction ampli-

tudes of 1.5 × 10−3 times the Fermi constant, GF . As a result, It is possible

to measure the resulting sensitivity to amplitudes for new four-electron contact

interactions as follows

Λ√
|g2RR − g2LL|

=
1√√

2GF |∆Qe
W |

≃ 246.22GeV√
0.024Qe

W

= 7.5TeV. (1.4)

A coupling strength of approximately one allows for probing the TeV scale. On

the other hand, when Λ is around 100 MeV, there is an extraordinary level

of sensitivity approaching 10−3 times the fine-structure constant, αQED. The

MOLLER experiment is an excellent complement to existing precise low-energy

experiments and the energy frontier projects, including those conducted at the

Large Hadron Collider (LHC). If the LHC continues to agree with the predic-

tions of the Standard Model of particle physics while operating at its maximum

energy of 14 TeV with high luminosity, then the MOLLER experiment will

play an important part in a comprehensive plan to discover evidence of various

physics phenomena that might escape detection at the LHC.

2. Precision Goal: In experiments with very high rates, high-precision measure-

ments of very small polarization-dependent scattering asymmetries rely on the

flux integration technique, depending on the detector choice. To isolate the

elastic scattered events onto a detector, which yields a response that is strictly

proportionate to the amount of electrons observed, this technique uses a mag-

netic spectrometer. The spectrometer must spatially separate elastic scattered
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events since it is impossible to distinguish elastic scattering from other types of

scattering using characteristics of the individual recorded electrons (e.g., time,

amplitude, energy, tracking information). With a fixed beam polarization, the

response of the detectors is integrated over time. The objective is to compare

integrated flux measurements with opposing beam polarization to make a mea-

surement. The scattering asymmetry is measured for a pair of windows with

right- (left-) handed polarization, with the integrated signal corresponding to

the detected flux rate, F, in a particular time window,

Araw
i = (

FR − FL

FR + FL

)i ≃ (
∆F

2F
)i. (1.5)

Rapid helicity reversal of 1.92 kHz is used to prevent experimental condition

changes that may otherwise make it more challenging to understand the in-

tegrated signal by altering its proportionality to the measured flux rate. The

electron beam trajectory, energy, and intensity are three factors that might

change quickly during these measurements; these conditions must be averaged

over the same integration periods and utilized to adjust the detected asymmetry

for the changing conditions

Ai = (
∆F

2F
− ∆I

2I
)i −

∑
j

(αj(∆Xj)i), (1.6)

where I is the time-averaged beam intensity throughout a helicity window, Xj

are corresponding average beam trajectory parameters derived from judiciously

placed beam position monitors, and αj ≡ ∂F
∂Xi

are coefficients that depend on

the scattering kinematics as well as the details of the spectrometer and detector

geometry. The uncertainty in this rapid measurement, Ai, will approximately

reflect the counting statistics of the measured flux in a well-designed experiment.

The experiment’s total statistical uncertainty is determined by averaging many

of these measurements, assuming independence. The average measurement Ā

7



and its standard deviation σĀ are given by:

Ā =
1

N

N∑
i=1

Ai ; σĀ =
σAi√
N
. (1.7)

In summary, the MOLLER experiment is poised to push the boundaries in the field

of PVES, primarily due to its unprecedented precision and advanced measurement

techniques. Unlike previous experiments, MOLLER targets a significant advance in

accuracy and sensitivity, proposing to measure the parity-violating asymmetry with

over five-fold improvement in fractional precision compared to past efforts. This en-

hancement originates from innovative approaches in beam monitoring, data collection,

and reduction of systematic uncertainties. Such advancements in methodology are

expected to provide clearer insights into electroweak interactions and offer a more rig-

orous examination of the Standard Model’s predictions. By setting new standards for

precision, MOLLER contributes to the immediate field of PVES and extends its im-

pact to the broader scope of experimental physics, potentially uncovering phenomena

that have so far evaded observation.

1.3 Document Roadmap

Chapter 1 sets the foundation for the thesis, introducing the primary focus and

establishing the overall context. Section 1.1 has presented an overview of PVES ex-

periments, offering essential background on this research area. In Section 1.2, the

physics motivation behind the research is explored. The chapter concludes with Sec-

tion 1.3, which provides a structured roadmap of the thesis, guiding readers through

the subsequent chapters and summarizing their content.

Chapter 2 outlines the theoretical framework critical to the MOLLER experi-

ment. Section 2.1 introduces the Standard Model of particle physics, highlighting the

fundamental particles and forces relevant to the study, detailing the building blocks

of the universe, the forces between them, and the discrete symmetries. Section 2.2

discusses helicity and the violation of parity within the electroweak theory, concepts
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central to understanding parity-violating asymmetries. The focus shifts in Section 2.3

to Møller scattering, which is central to measuring the electron’s weak charge. Sec-

tion 2.4 examines electron-proton scattering processes and their importance in pion

productions. Section 2.5 considers the impact of electron polarization on asymmetry

measurements. Section 2.6 investigates how charged particles interact with materi-

als, a key aspect for detection in the MOLLER experiment. Section 2.7 introduces

cosmic and beam testing as methods for validating the results of the pion detector

in the MOLLER experiment. The chapter concludes with Section 2.8, presenting re-

moll, the simulation that employs Geant4 and ROOT for the experimental modelling.

This chapter provides a clear path from the core theories of particle physics to the

expected outcomes of the experiment, setting the stage for the detailed discussions

to follow in the thesis.

Chapter 3 transitions into a detailed examination of the MOLLER experiment,

highlighting the facilities and equipment involved. Section 3.1 begins with the polar-

ized beam, monitoring, and control, offering an in-depth look at the polarized electron

source and elaborating on the specific MOLLER beam requirements. A comprehen-

sive overview of the target system is covered in Section 3.2. Section 3.3 focuses on the

spectrometer system, discussing the open spectrometer concept and detailing the dis-

tribution on the detector plane. The mechanisms of the detector system are described

in Section 3.4, starting with the main integrating detectors, moving to the tracking

detectors, and concluding with an in-depth analysis of the auxiliary detectors. Section

3.5 summarizes the components of data collection, experiment initiation, and data

interpretation, detailing data collection, trigger, and analysis. Overall, the chapter

provides a thorough understanding of the MOLLER experiment’s setup and pro-

cesses, laying the foundation for the methodology, procedures, and results presented

in subsequent chapters of this thesis.

Chapter 4 presents the comprehensive development of the pion detector system,

elucidating its principles and practical applications. Section 4.1 commences with ex-

ploring the system’s physics and mechanisms, beginning with the criteria for selecting

the active medium, followed by the requirements for choosing PMTs. The focus then

shifts to the optimization process of the system in Section 4.2, detailing the strategies

9



and algorithms employed. Section 4.3 presents an examination of the mechanical de-

sign of the system, discussing its structural and functional aspects. The verification

of simulation results is addressed in Section 4.4 through cosmic testing, with sub-

sections dedicated to the setup for cosmic testing, and the simulation of these tests.

This is followed by Section 4.5, which outlines the beam testing verification, describes

the beam testing setup, and concludes with a comparative analysis of results from

simulations, cosmic, and beam testings. Overall, the chapter provides an intricate

and detailed account of the pion detector system’s development, from its theoretical

underpinnings to its practical implementation, setting the stage for further discussion

on its applications and significance in the field.

Chapter 5 explores Bayesian statistical analysis and its application to PVES ex-

periments like Qweak and MOLLER. It examines integrating prior knowledge with

observed data to enhance measurement precision, as explained in the introductory

section 5.1. The theoretical basis of Bayesian analysis, including the derivation of

Bayes’ theorem and its components, is addressed in Section 5.2. The practical appli-

cation of Bayesian methods to the Qweak experiment and comparing this approach

with Monte Carlo minimization is discussed in Section 5.3. Lastly, Section 5.4 focuses

on adapting this method to the MOLLER experiment, highlighting the generation

of mock data and the prediction of experimental outcomes. This chapter reinforces

the significance of Bayesian analysis in interpreting experimental data and showcases

its potential to yield precise insights into the fundamental interactions investigated

by PVES experiments. Chapter 6 concludes the thesis by summarizing the key find-

ings from the MOLLER experiment and outlining future research directions. Section

?? provides a detailed summary of the experiment’s objectives, methodologies, and

significant results, emphasizing the precision achieved in measuring parity-violating

asymmetry and the techniques used for signal correction and background differentia-

tion. The chapter continues with Section 6.2, which discusses potential advancements

in the pion detector system and Bayesian analysis methodologies. This section pro-

poses enhancements to experimental setups and statistical models, aiming to refine

data analysis and improve the precision of future measurements. The chapter serves

to bridge the comprehensive research presented in the previous chapters with forth-
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coming initiatives that could further advance the field of particle physics.
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Chapter 2

Theory and Methodology

This chapter discusses the theoretical aspects underlying the MOLLER experi-

ment. Starting with the Standard Model of particle physics, the chapter examines

the fundamental particles and interactions that are key to the experiment. This is

followed by exploring parity symmetry violation, a central aspect of electron scatter-

ing driven by weak interactions. The chapter then focuses on the process of pion-

production through inelastic electron-proton scattering, emphasizing the importance

of detecting these signals for the experiment’s objectives.

Furthermore, the chapter addresses the interaction of charged particles with mat-

ter. This section is critical for understanding how particles such as pions, muons, and

electrons interact with the various materials used in the experiment, influencing their

detection and analysis.

Finally, the chapter concludes with an overview of the MOLLER experiment simu-

lation, known as remoll. This simulation, utilizing Geant4 and ROOT, is instrumental

in modeling the experiment and understanding the expected outcomes. This com-

prehensive chapter lays the theoretical and practical foundation for the MOLLER

experiment, guiding the reader through the complex physics and simulations that

form the foundation of this research.
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2.1 The Standard Model of Particle Physics

Through the theories and research of thousands of physicists since the 1950s, it has

been discovered that the universe is comprised of a few basic building blocks known

as fundamental particles governed by four fundamental forces. The Standard Model

of particle physics, as shown in Figure 2.1, incorporates our current understanding

of the interactions between these particles and three of the forces. It was created

in the early 1970s and has predicted a wide range of phenomena while successfully

explaining nearly all experimental data. The following subsections explain the es-

Figure 2.1: The Standard Model of particle physics [27].

sential components of the Standard Model of particle physics. Subsection 2.1.1 will

introduce the elementary particles, fermions, and bosons, which are the universe’s

building blocks. Following this, subsections 2.1.2 and 2.1.3 will discuss the forces

that bind these particles and explore the discrete symmetries that form the basis for

the laws governing their interactions. This examination will prepare us to understand

complex phenomena such as helicity and parity-violating asymmetry, which will be

further expanded upon in subsequent sections.
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2.1.1 Particles of Matter

The two categories of elementary particles in the Standard Model are fermions and

bosons. Particles with integer spin are known as bosons. They act as force carriers

and mediate particle interactions. Fermions, with a spin of 1
2
integer, are divided

into six quarks and six leptons. Quarks compose protons, neutrons, and other exotic

particles, while leptons include electron-like particles and neutrinos. Quarks and

leptons are paired or arranged in generations of six to correlate.

The first generation comprises the lightest and most stable particles, whereas

the second and third generations comprise heavier and less stable particles. While

the first generation of particles forms all stable matter in the universe, any heavier

particles rapidly decay into more stable ones. The three generations of the six quarks

are composed of the up quark (u) and down quark (d), as the first generation, the

charm quark (c) and strange quark (s), as the second generation, and the top quark

(t) and bottom (b) (or beauty) quark, as the third generation. Additionally, there are

three different colors of quarks, and they only combine in ways that produce colorless

objects. The three generations of the six leptons are composed of the electron (e)

and electron neutrino (νe), the muon (µ) and muon neutrino (νµ), and the tau (τ)

and tau neutrino (ντ ) that are similarly ordered. While the neutrinos are electrically

neutral and have very little mass, the electron, muon, and tau, all have an electric

charge and a sizable mass.

2.1.2 Carrier Particles and Forces

Four fundamental forces govern the universe: the strong force, the weak force, the

electromagnetic force, and the gravitational force. They each work within different

constraints and have unique strengths. The gravitational and electromagnetic forces

have an infinite range; the former is the weakest force, and the latter is far stronger.

The weak and strong forces dominate only at the level of subatomic particles and

are only effective across very small distances. Over larger distances, the weak force

is significantly weaker than the electromagnetic and strong forces, it is still much

stronger than the gravitational force. As its name suggests, the strongest of the four
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fundamental interactions is the strong force. All four fundamental forces are mediated

by the exchange of force-carrier particles. Each force is associated with a specific

boson: the gluon (g) for the strong force, the photon (γ) for the electromagnetic

force, and the W and Z bosons for the weak force. Although it has not yet been

identified, the graviton is hypothesized to be the carrier of the gravitational force.

The electromagnetic, strong, and weak forces, along with all of their carrier par-

ticles, are included in the Standard Model of particle physics, explaining how these

forces interact with every matter particle. The most common force in our daily lives,

gravity, is not included in the Standard Model since it has been shown to be difficult

to incorporate gravity into this framework. The primary challenge in unifying the

general theory of relativity and quantum theory lies in the theoretical inclusion of

gravity, as no complete framework currently exists to reconcile gravity with quantum

mechanics.

The Higgs boson is a major element of the Standard Model associated with the

Higgs field. This field gives mass to other fundamental particles such as electrons

and quarks. In 2012, the existence of the Higgs boson, predicted by the theory, was

confirmed by experiments. The European Organization for Nuclear Research (CERN)

built a high-energy collider called the Large Hadron Collider (LHC) to discover the

Higgs particle. Inside two detectors (ATLAS [28] and CMS [29]), two very energetic

proton beams collide. Each time a proton from one beam collides with another proton

from the other beam, additional particles are created, including the Higgs boson.

Some of the produced particles can be observed and measured in the detectors. The

Higgs boson decays into other Standard Model particles very quickly and cannot be

directly recognized, but detectors can detect the byproducts of the decay. The Higgs

boson could decay through a variety of mechanisms. Based on the discovered collision

byproducts, the decay process can be reconstructed.

Even though the Standard Model provides an accurate description of particle

interactions, it is still insufficient. It might only be a small component of a larger

picture that also incorporates novel physics buried deep inside the universe. We will

be able to fill in more of these blanks with the help of new findings from experiments

like the one described here and other future PVES experiments.
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2.1.3 Discrete Symmetries

Symmetry in physics implies that a transformation of the coordinate system does

not affect the Lagrangian representing the system being studied, and an observed

or intrinsic feature of the system remains invariant under that transformation. The

Standard Model of particle physics describes the particles and their interactions based

on underlying symmetries. Charge, parity, and time reversal are discrete symmetries

in particle physics that the Standard Model may or may not satisfy.

Parity is the most relevant symmetry to this research, representing a spatial in-

version through the origin. When parity is applied twice, the initial state is restored.

In contrast to electromagnetic and strong interactions, which do not violate parity,

weak interactions do. The initial verification of parity violation was found in the in-

vestigation of β decay of polarized 60Co [30], where it was shown that the electron was

preferentially emitted in the direction opposing the nucleus’ spin. The distribution

of the electrons that decay can be characterized as:

dN

dΩ
= 1− σ⃗ · p⃗

E
. (2.1)

The σ⃗ · p⃗ term is parity-violating, as will be detailed in the next section. When

parity is violated, the weak interaction exhibits a preferred spatial direction. The

next section provides a more detailed discussion of helicity, electroweak theory, and

the formalism of parity-violating asymmetry, both conceptually and mathematically.

2.2 Theoretical Formalism of Helicity and Parity-

Violating Asymmetry

In particle physics, an understanding of the fundamental properties and interac-

tions of elementary particles necessitates an exploration of their intrinsic character-

istics and the symmetries that influence their behavior. This section introduces the

theoretical formalisms of helicity and electroweak theory to establish the foundation

for explaining parity-violating asymmetry in subsequent sections.
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2.2.1 Helicity

A particle’s helicity is determined by the angle (cosine) between its spin and

momentum directions. The definition of the helicity operator is:

Σ⃗ · p̂ =

(
σ⃗ · p̂ 0

0 σ⃗ · p̂

)
, (2.2)

where p̂ = p⃗/|p⃗| is the unit vector pointing in the direction of a particle’s momentum

and σ⃗ = (σ1, σ2, σ3) are the 2×2 Pauli matrices. For massless particles, right-handed

particles (or particles with positive helicity) have their spin and momentum aligned,

while left-handed particles (or particles with negative helicity) have their spin and

momentum anti-aligned, as shown in Figure 2.2.

Figure 2.2: Right-handed and Left-handed particles. S⃗ shows the direction of the
spin, V⃗ and P⃗ show the direction of the motion [31].

For a massless particle, all reference frames will have the same value for its helicity,

implying that helicity is an intrinsic property of the particle. In contrast, helicity is

not an inherent property for a particle with mass. This is because different observers

can measure varying left- or right-helicity values based on their specific reference

frames. Helicity is, therefore, not a fundamental characteristic of most particles.

The concept of helicity remains applicable for relativistic electrons interacting via

weak interaction. Thus, the electrons are considered left-handed if their spin and

momentum directions are anti-aligned and right-handed if their spin and momentum

directions are aligned. When the parity operator mentioned in 2.1.3 is applied to an

electron, the spin is unaffected, but the momentum is reversed under spatial inversion.
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2.2.2 Electroweak Theory

Following the first observation of parity violation in the weak interaction [30], sev-

eral theories and models were developed to explain the phenomenon. The Glashow-

Weinberg-Salam (GWS) theory was one of these frameworks [32]. It predicts the

existence of a new electrically neutral boson, Z0, and leads to the unification of the

electromagnetic and weak interactions. The electroweak symmetry is mathematically

described by an SU(2)×U(1) gauge group, which formalizes the operations that can

be applied to the electroweak gauge fields without affecting the system’s dynamics.

The electroweak gauge fields include the weak isospin fieldsW1,W2,W3, and the weak

hypercharge field B. The W± and Z0 bosons, as well as the photon, emerge from

the Standard Model’s spontaneous symmetry breaking of the electroweak symmetry

SU(2) × U(1) to U(1)em. This symmetry breaking is induced by the Higgs mecha-

nism, a complex quantum-field-theoretic phenomenon that spontaneously alters the

system’s symmetry and reorganizes the degrees of freedom [33].

The Lagrangian for the electroweak interaction after spontaneous symmetry breaking

is given by [34]:

L =Lgauge + Lϕ +
∑
r

ψr

(
i∂ −mr −

mrH

ν

)
ψr

− g

2
√
2

(
Jµ
WW

−
µ + Jµ†

WW
+
µ

)
− eJµ

QAµ −
g

2 cos θW
Jµ
ZZµ,

(2.3)

where Lgauge represents the kinetic energy and self-interactions of the gauge bosons,

while Lϕ includes the kinetic and potential energy of the Higgs field, describing its

self-interactions. The fermion kinetic and mass terms,
∑

r ψr

(
i∂ −mr − mrH

ν

)
ψr,

represent the kinetic energy of the fermions and their interactions with the Higgs

field. The charged current interaction term, − g

2
√
2

(
Jµ
WW

−
µ + Jµ†

WW
+
µ

)
, describes the

interaction of fermions with the W bosons, where Jµ
W represents the weak isospin

current. The electromagnetic interaction term, −eJµ
QAµ, represents the interaction of

fermions with the photon field Aµ, J
µ
Q being the electromagnetic current. Finally, the
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neutral current interaction term, − g
2 cos θW

Jµ
ZZµ, describes the interaction of fermions

with the Z boson, considering Jµ
Z as the neutral weak current.

The symmetry breaking not only reveals the mass generation for the W± and Z0

bosons but also determines the relationships among the weak isospin, weak hyper-

charge, and electromagnetic interactions, leading to the formation of electric charge

and the associated currents. Weak hypercharge (Yw) and the T3 component of weak

isospin combine in a specific linear manner to form the electric charge, Q = T3+
1
2
Yw,

and the associated current, JQ = J3 + 1
2
JY . The W3 and B bosons mix to form two

distinct physical bosons with different masses, the Z0 boson and the photon (γ), as

a result of the aforementioned spontaneous symmetry breaking:(
γ

Z0

)
=

(
cos θW sin θW

− sin θW cos θW

)(
B

W3

)
, (2.4)

where the weak mixing angle is denoted by θW . In the (W3, B) plane, the particle

representation axes are effectively rotated by the angle θW . Consequently, there is

a mismatch between the masses of the Z0 and the W particles, denoted as mZ and

mW , respectively:

mZ =
mW

cos θW
. (2.5)

The charged massive bosons W± are created by the combination of the W1 and W2

bosons:

W± =
1√
2
(W1 ∓ iW2). (2.6)

The weak isospin, hypercharge, and electromagnetic couplings are related by g sin θW =

g′ cos θW = e. The Z boson interactions can be separated into right-handed couplings

from JEM and left-handed couplings from J3:

gL = T3 −Q sin2 θW , gR = −Q sin2 θW . (2.7)

These couplings can be written as vector and axial couplings gV and gA:

gV = gL + gR = T3 − 2Q sin2 θW , gA = gL − gR = T3. (2.8)
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The weak neutral current couplings predicted by electroweak theory depend on the

type of fermion, as listed in Table 2.1. According to GWS theory, all spin-1/2 par-

Table 2.1: The weak neutral current couplings for different fermion types.

Lepton 2gV 2gA Quark 2gV 2gA
νe, νµ, ντ 1 1 u, c, t 1− 8

3
sin2 θW 1

e, µ, τ −1 + 4 sin2 θW −1 d, s, b −1 + 4
3
sin2 θW −1

ticles carry both axial (gA) and vector (gV ) couplings. The neutral-weak interaction

strength for the left- and right-handed states of spin-1/2 particles differs according

to the axial coupling, whereas the vector coupling defines the average of the two. For

pure virtual photon exchange, since there is no difference between left- and right-

handed particles, the only coupling that exists is a vector coupling that is equivalent

to the particle’s electrical charge. The Z boson can interact with both left- and

right-handed fermions.

In summary, the electroweak theory, mainly through the framework of the GWS

model, provides a comprehensive explanation of the weak neutral current couplings,

distinguishing between the interactions of left- and right-handed fermions. This un-

derstanding forms the cornerstone for investigating intricate particle interactions,

such as electron-electron and electron-proton scattering, detailed in sections 2.3, 2.4,

and 2.5.

2.3 Electron-Electron Scattering and Parity-Violating

Asymmetry

Electron-electron scattering, represented by the notation e−e− → e−e−, is known

as Møller scattering. The leading order Feynman diagrams related to Møller scat-

tering, including both interfering direct and exchange diagrams, are shown in Figure

2.3. To write the cross section for this process, the amplitude for the electromagnetic

interaction, Aγ, as well as the amplitude for the weak interaction, AZ0 , should be

considered:

σR(L) = |Aγ ± AZ0|2 = |Aγ|2 ± 2ℜ(AγA
∗
Z0) + |AZ0|2. (2.9)
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Figure 2.3: Feynman diagrams for Møller scattering at tree level, a) electromagnetic
interaction, b) electroweak interaction [23].

The parity-violating asymmetry arises from the interference of electromagnetic and

weak interactions. The weak interaction mediator Z0 does not couple with left-

and right-handed fermions with equal strength, leading to a differential cross-section

that depends on the electron’s helicity. This dependency reflects the parity-violating

nature of the neutral current, and thus, the parity-violating asymmetry is defined as

the normalized difference in the helicity-correlated scattering cross-section:

AL
e =

(dσR

dΩ
− dσL

dΩ
)

(dσR

dΩ
+ dσL

dΩ
)
∝

2ℜ(AγA
∗
Z0)

|Aγ|2
, (2.10)

It can be obtained as [35]:

AL
e = mE

GF√
2πα

4 sin2(θ)

(3 + cos2(θ))2
Qe

W , (2.11)

where dσR

dΩ
and dσL

dΩ
represent differential cross-sections for right-handed and left-

handed scattering processes, respectively, α is the fine structure constant, GF is the

Fermi constant, m is the mass of the electron, θ is the scattering angle in the center

of mass frame, and Qe
W is the weak charge of the electron. The weak charge of the

electron is proportional to the product of the electron’s vector and axial couplings to

the Z0 boson, Qe
W = 2geV × 2geA = 1− 4 sin2(θW ), as mentioned in Section 1.2.

Measuring the parity-violating asymmetry in Equation 2.11 is the main objec-

tive of the MOLLER experiment. However, both other parity-violating and parity-

conserving asymmetries contribute to the main measurement. This is because, in the

scattering of longitudinally polarized electrons from unpolarized targets, processes

other than Møller scattering are possible, such as electron-proton scattering. There-
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fore, the impact of these parity-violating and parity-conserving asymmetries should

be considered. Only longitudinal electron parity-violating asymmetry was covered in

this section, and additional parity-violating and parity-conserving asymmetries are

addressed in the following sections.

Given the potential contributions of other scattering processes to these asymme-

tries, it is crucial to explore three types of electron-proton scatterings: elastic, inelas-

tic, and deep inelastic scatterings. The inelastic and deep inelastic scattering types,

enabled by electron beams with energies of 11 GeV, will be considered to construct

the theoretical framework for the proposed research project. In inelastic scattering,

protons and neutrons transition into excited states. Upon decaying back into their

stable states, they produce particles other than electrons such as pions (π±, π0). Deep

inelastic scattering involves a high-energy electron beam knocking out the quarks of

a proton, potentially yielding a variety of hadrons, primarily pions. Furthermore, in

the deep inelastic scattering processes, combinations of quarks and anti-quarks can

constitute the pions. This research focuses on detecting π−; the reasons for this will

be explained in Chapter 3, where the experimental apparatus, designed to bend the

electrons, is discussed. The following section discusses electron-proton scattering in

more detail, focusing on the mathematical aspects.

2.4 Electron-Proton Scattering and Parity-Violating

Asymmetry

The investigation of electron-proton scattering, denoted as e−p→ e−p, is essential

in advancing our understanding of particle interactions and the parity-violating and

parity-conserving asymmetry. This field of study provides insights into the funda-

mental properties of protons and a framework for evaluating theoretical models in

particle physics. Building on the electroweak theory principles discussed in section

2.2.2, this section probes how these theories are demonstrated in the complex dynam-

ics between electrons and protons, illuminating the more intricate aspects of parity

violation in these interactions.
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The outcome of e−p → e−p scattering depends on the effective wavelength,

λ = hc/E. When the electron energy is extremely low, and the wavelength sig-

nificantly surpasses the proton’s radius (λ≫ rp), the proton can be approximated as

a point-like particle, simplifying our understanding of the scattering process. At low

electron energies, where the wavelength is comparable to the proton’s radius (λ ∼ rp),

the proton’s extended charge distribution becomes significant, altering the scatter-

ing dynamics. High electron energies, characterized by wavelengths shorter than the

proton’s radius (λ < rp), allow us to probe the proton’s substructure, revealing the

interactions with its constituent quarks. In the regime of extremely high electron

energies, where the wavelength is much smaller than the proton’s radius (λ ≪ rp),

the scattering interactions predominantly occur with a sea of gluons and quarks,

providing a more detailed view of the proton’s internal structure. The MOLLER

experiment would align most closely with scenarios where the electron energy is high

or extremely high. In other words, the MOLLER experiment operates in a regime

where the electron’s energy and corresponding wavelength are sufficiently high to

probe subatomic details, including the electroweak interaction between electrons and

the quark substructure of protons.

As we get deeper into the complexities of electron-proton scattering, it becomes

necessary to consider the structural characteristics of protons that influence these

interactions. This is where form factor theory comes into play. Form factors, which

are the Fourier transform of the matter density of a proton, explain how the interior

structure of the proton influences the scattering process [36]. Form factors allow

us to determine exact details like the distribution of the electric charge within the

proton and its recoil during scattering events by bridging our theoretical models with

experimental facts [37].

In the following subsections, a deeper look into specific scattering scenarios starts

with elastic electron-proton scattering in 2.4.1. Subsection 2.4.2 focuses on inelas-

tic electron-proton scattering, where the effects of higher energy impacts and proton

recoil are crucial. This will detail how the proton’s structure, represented by form

factors, affects the high-energy interactions. Subsection 2.4.3 will also cover deep in-

elastic scattering, revealing insights into the formation of hadronic jets and their role
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in understanding quark behavior. Subsection 2.4.4 will integrate these scattering con-

cepts into the context of parity-violating and parity-conserving asymmetries in deep

inelastic electron-proton scattering. Emphasizing practical experimental considera-

tions, this section will discuss the need for adjustments due to pion background signals

in the MOLLER experiment and explore the expected results based on theoretical

models.

2.4.1 Elastic Electron-Proton Scattering

Figure 2.4 illustrates the Feynman diagram for elastic electron-proton scattering.

The diagram represents the exchange of a virtual photon (denoted by q) between an

incoming electron (with momentum p1) and a proton (with momentum p2), resulting

in an outgoing electron (with momentum p3) and proton (with momentum p4). The

vertices represent the interaction points where the electromagnetic force acts between

the particles. Notably, the diagram includes a blob at one vertex to indicate the

complex interaction between the virtual photon and the proton. The differential cross-

Figure 2.4: Feynman diagram of elastic electron-proton scattering, illustrating the
exchange of a virtual photon, denoted as q, between an incoming electron (p1) and a
proton (p2). The interaction results in outgoing electron (p3) and proton (p4) particles.
The shaded blob represents complex interactions at the vertex, indicating factors not
explicitly detailed in the diagram [1].

section in elastic electron-proton scattering, denoted by dσ
dΩ
, describes the probability

density that a scattering event will occur under a specific solid angle. The formula

for this differential cross-section is given by [1]:

dσ

dΩ
=

(
αℏ

4ME sin2
(
θ
2

))2
E ′

E

[
2K1 sin

2

(
θ

2

)
+K2 cos

2

(
θ

2

)]
, (2.12)
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where E and E ′ represent the energies of the electron before and after the scattering

event, respectively. The variable M denotes the proton mass, and θ is the scattering

angle. The terms K1 and K2 are coefficients that include the form factors depending

on the square of the momentum transfer, q2. The outgoing electron energy, E ′, is not

an independent variable; it is kinematically determined by E and θ:

E ′ =
E

1 +
(

2E
Mc2

)
sin2

(
θ
2

) . (2.13)

By counting the number of electrons scattered in a given direction for a range of

incident energies, K1(q
2) and K2(q

2) can be determined experimentally. Instead of

working directly with these quantities, the electric and magnetic form factors, GE(q
2)

and GM(q2), are derived as follows:

K1 = −q2G2
M , K2 =

(2Mc)2G2
E −

(
q

2Mc

)2
G2

M

1−
(

q
2Mc

)2 . (2.14)

GE and GM are related to the proton charge and magnetic moment distributions,

respectively. This formulation is essential for understanding the scattering dynamics

as it incorporates the cross-section’s dependency on the electron’s initial and final

energies and the angle of deflection.

2.4.2 Inelastic Electron-Proton Scattering

While elastic scattering of electrons by protons at modest energies results in the

recoil of the proton retaining its identity, inelastic scattering processes at higher

energies can produce a variety of particles. When the incident electron has sufficient

energy, it can excite the proton into a higher energy state, leading to the emission

of pions, kaons, deltas, and other particles as part of the reaction products. This

is depicted in the inelastic scattering process e + p → e + X, where X represents

the array of possible particles produced, referred to as hadronic jets. Figure 2.5

illustrates a typical Feynman diagram for such an inelastic scattering process. The

diagram shows an electron scattering off a proton, where the proton transitions into
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a state characterized by multiple particle emissions. These emissions are represented

by several outgoing lines, indicating the variety of hadronic jets resulting from the

proton’s disintegration in a higher energy state. The non-perturbative vertex in the

Figure 2.5: Feynman diagram illustrating inelastic electron-proton scattering. An
incoming electron (p1) exchanges a photon (q) with a proton (p2), leading to an out-
going electron (p3) and resulting hadronic jets (p4, pn). The shaded blob at the vertex
represents the non-perturbative and not fully understood photon-proton interaction.
The diagram also depicts the formation of hadronic jets from the excited proton [1].

diagram, often represented as a shaded or filled blob, symbolizes the current limits of

our understanding regarding the detailed photon-proton interactions at these energy

levels.

In the inelastic electron-proton scattering experiments, the inclusive cross sec-

tion is measured instead of recording the momentum of the scattered electron (p3).

The inclusive cross-section can be derived by summing over X and integrating over

p4, p5, . . . , pn. In this case, unlike elastic scattering, the outgoing electron’s energy,

E ′, does not depend solely on the initial energy E and the scattering angle θ since

the outgoing hadrons can absorb a wide range of energy values. The total hadronic

momentum ptot = p4+p5+ . . .+pn is not bound by the condition p2tot =M2c2. Conse-

quently, Equation 2.13 no longer applies. The differential cross-section for scattering

under these more generalized conditions incorporates the modified kinematic factors:

dσ

dE ′dΩ
=

(
αℏ

2E sin2(θ/2)

)2 [
2W1 sin

2(θ/2) +W2 cos
2(θ/2)

]
. (2.15)

The structure functions, W1 and W2, depend on two independent variables given a
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specific incident energy E. While experimentalists utilize E ′ and θ, theorists would

generally prefer to use the Lorentz-invariant quantities q2 and q · p. Additionally, as
will be detailed in the subsequent section, theorists favor q2 and x, where x = − q2

2q·p .

By contrast, the elastic form factors (K1 and K2) depend on a single variable (θ

for the experimentalist, q2 for the theorist). In this scenario, E ′ is determined by

equation 2.13 and x is fixed (x = 1). Formally, elastic scattering can be seen as a

special case of inelastic scattering, where an additional constraint (p2tot = M2c2) is

imposed on the outgoing hadron momenta. It can be verified that [1]:

W1,2(q
2, x) = −K1,2(q

2)

2Mq2
δ(x− 1). (2.16)

This formulation effectively bridges the theoretical models between elastic and inelas-

tic scattering phenomena.

2.4.3 Deep Inelastic Electron-Proton Scattering

During the late 1960s, Bjorken postulated that at extremely high energies, the

dependency of inelastic structure functions on q2 diminishes, essentially transforming

them into functions solely of x = − q2

2q·p , which he named the Bjorken variable. More

precisely, he suggested that

MW1(q
2, x) → F1(x), (2.17)

− q2

2Mc2
W2(q

2, x) → F2(x). (2.18)

In what is known as the deep inelastic scattering regime, where both−q2 = (4EE ′/c2)×
sin2(θ/2) and q ·p =M(E−E ′) are significantly large but their ratio, 2x = −q2/(q ·p),
remains fixed. This concept is illustrated by the cross-section data for inclusive in-

elastic electron-proton scattering shown in Figure 2.6, which plots the cross-section

as a function of the missing mass (W =
√
p2tot/c). The peak at W = M has been

scaled down to better fit within the graph. Further theoretical insights by Callan and
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Figure 2.6: The cross-section for inclusive inelastic electron-proton scattering as a
function of missing mass (W ), illustrates the reduction in dependency on q2 at higher
energies. The distinct peak corresponds to the elastic scattering, reduced for clarity
[1].

Gross in 1969 [38] proposed a relationship between these scaling functions:

2xF1(x) = F2(x), (2.19)

which has also been validated through experiments [39]. The Callan-Gross relation

[38] implies that the charged constituents of the proton are fermions with spin 1
2
, as

a spin 0 prediction would lead to 2xF1/F2 = 0, clearly inconsistent with the observed

data. The experimental confirmation of Bjorken scaling and the Callan-Gross relation

in deep inelastic scattering provides robust evidence for the existence of quarks. To

derive Equations 2.17, 2.18, and 2.19, the reader is referred to Reference [1]. By

substituting these three Equations to Equation 2.15, it can be found

dσ

dE ′dΩ
=
F1(x)

2M

(
αℏ

E sin
(
θ
2

))2 [
1 +

2EE ′

(E − E ′)2
cos2

(
θ

2

)]
. (2.20)

The formula above shows how the deep inelastic scattering process depends on both

the energy of the incoming electron and the scattering angle, thereby affecting the dis-

tribution and characteristics of the reaction products. By experimentally measuring

dσ
dE′dΩ

, researchers can derive insights into the proton’s behavior under high-energy

impacts, specifically regarding how its constituent quarks redistribute energy and
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momentum.

Generated hadrons through deep inelastic electron-proton scattering include two

main categories: baryons and mesons. Baryons, typically composed of three quarks,

include stable particles like protons and neutrons and more exotic forms such as delta

baryons and hyperons. Delta baryons, or ∆ resonances, such as ∆++, ∆+, ∆0, and

∆−, also typically decay into nucleons and pions, e.g., ∆+ decaying into a proton and

π0 or a neutron and π+, and ∆0 decaying into a proton and π−. Hyperons, which

contain at least one strange quark, encompass particles like Lambda (Λ), Sigma (Σ),

Xi (Ξ), and Omega (Ω) baryons, and typically decay into nucleons and pions. For

instance, the Lambda (Λ) baryon often decays into a proton and a π− or a neutron

and a π0, while the Sigma (Σ) baryon can decay into a neutron and a π+ or a

proton and a π0, among other decay modes. Mesons, consisting of a quark and

an antiquark, include particles such as pions, the lightest and most broadly studied

mesons. Consequently, the production of pions can occur directly from deep inelastic

electron-proton interactions or indirectly from the decay of resonance states.

The purpose of this section was to explain how pion signals are produced in the

MOLLER experiment. Deep inelastic electron-proton scatterings and consequent pion

generations are enabled using electron beams with energies of 11 GeV. It is important

to recall that the MOLLER experiment’s primary signal comes from electron-electron

scattering. Nevertheless, charged pions are important in determining the background

fraction and signal asymmetry. To effectively correct the primary signal for the back-

ground, the effects of pion parity-violating and parity-conserving asymmetries, which

we will further investigate experimentally in chapters 3 and 4, should be considered.

The pion parity-violating asymmetry’s mathematical formalism is examined in the

following subsection.

2.4.4 Deep Inelastic Electron-Proton Scattering and Parity-

Violating Asymmetry

In the context of the Standard Model of particle physics, parity-violating pion

asymmetry in deep inelastic electron-proton scattering in a Q2 ≪ M2
Z region with
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one photon or one Z0 exchange between the electron and the target can be expressed

as:

AL
π =

GFQ
2

4
√
2πα

[a1(x) + a3(x)
1− (1− y)2

1 + (1− y)2
], (2.21)

where GF is the Fermi constant, Q2 is the squared momentum transfer to the electron,

α is the electromagnetic fine structure constant, x is the Bjorken variable, and y is

the fractional energy loss of the incident electron. a1 and a3 are

a1(x) = 2geA
F γZ
1

F γ
1

, a3(x) = geV
F γZ
3

F γ
1

. (2.22)

γ − Z interference structure functions are characterized by F γZ
1,3 functions and are

dependent on the vector and axial coupling of the electrons and quark.

It is important to note that this formula for pion parity-violating asymmetry

in deep inelastic scattering is not the sole contributor to the observed effects in

practical experimental setups, such as the MOLLER experiment and other PVES

experiments. In other words, the pion parity-violating asymmetry can be zero or

very small in value, indicating that pion production at this stage is primarily parity-

conserving. As discussed in Section 2.4.3, delta baryons and hyperons can decay into

nucleons and pions. These decays involve weak interactions that can introduce parity-

violating effects, potentially complicating the interpretation of experimental results.

The parity-violating and parity-conserving asymmetry values resulting from these

pion productions should be considered when measuring the Møller parity-violating

asymmetry. From an experimental perspective, it is necessary to measure both the

pion parity-violating asymmetry and the pion dilution factor using the dedicated pion

detector system (refer to section 3.4.3.2) and then to correct the Møller signal for the

pion background signal.

The hypothesis in the simulations of the MOLLER experiment assumes a purely

longitudinally polarized beam. However, the actual experiment may only partially

align with this theoretical prediction. The following section will discuss how the trans-

verse polarization component of the beam affects both Møller and pion asymmetry.
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2.5 Transverse Asymmetry

In the MOLLER experiment, the electron beam produced by the source is designed

to have purely (maximum possible) longitudinal polarization at the MOLLER target,

aligning the spin of the electrons along their direction of motion. In this scenario,

no transverse components of polarization are expected to be measured. However,

slight deviations in the beam’s spin alignment due to imperfections in the source,

accelerator, or even external magnetic fields can result in transverse components of

polarization. A transverse component of beam polarization would create an azimuthal

modulation in the scattering rate asymmetry. Asymmetries arising from transverse

polarization are called beam-transverse single-spin asymmetries (BTSSA), which de-

scribe the asymmetry when the electron’s spin lies within the scattering plane but is

oriented perpendicular to the incoming electron’s momentum. So, when we talk about

the asymmetry components in all the subsequent sections, it means the asymmetry

which have been arisen from the polarization components.

In the following subsections, two cases of BTSSA relevant to this research are

studied: transversely polarized Møller scattering and transversely polarized electron-

proton scattering.

2.5.1 Transverse Asymmetry in Electron-Electron Scattering

In the process of transversely polarized Møller scattering, e−↑e− → e−e−, most of

the data from PVES experiments utilized primarily longitudinal polarization of the

electron beam, a fraction is conducted using primarily transverse electron polariza-

tion, thus facilitating the analysis of azimuthal asymmetry,

AT
e (ϕ) ≡

2π d(σR−σL)
dϕ

σR + σL
. (2.23)

The derivation of AT
e (ϕ) for transversely polarized Møller scattering in the leading

one-loop order was conducted by Barut and Fronsdal in 1960 [40], and by DeRaad

and Ng in 1974 [41]. Note that ϕ here is the azimuthal angle of the scattered electron.

This calculation is crucially influenced by the absorptive component of the scattering
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amplitude, which necessitates an s-channel cut to account for the real, on-shell par-

ticle states. Consequently, only the box Feynman diagram and the diagram where

the two indistinguishable outgoing electron legs are exchanged are relevant. These

diagrams are essential as they capture both the direct and exchanged interactions be-

tween the electrons, including higher-order loop effects that contribute to azimuthal

asymmetry in the scattering process. These considerations are illustrated in Figure

2.7, highlighting the unique contributions of these diagrams to the observable under

study.

Figure 2.7: Left: Tree-level Feynman diagrams for transversely polarized electron-
electron scattering, showing the basic exchange processes. Right: One-loop Feynman
diagrams, contributing to the azimuthal asymmetry in transversely polarized Møller
scattering. The absorptive components are highlighted by the dashed red line (s-
channel cuts). These diagrams focus solely on box contributions to observe the effects
of transverse spin, which are marked by arrows on the incoming electron lines [42].

At the percent level of precision, it becomes crucial to investigate the next-to-

leading order radiative corrections to AT
e (ϕ). The detailed theoretical calculation of

these radiative corrections are beyond the scope of this research thesis and this section.

The primary focus of this subsection, and the subsequent one, is to underscore the

significance of transverse asymmetry and the necessity of incorporating corrections

into the primary signal. For comprehensive details, the reader is referred to Reference

[42]. Considering the radiative corrections but omitting the detailed steps results in

the following expression for transverse asymmetry:

AT
e =

1

sinϕ

dσϕ/dΩ

dσBorn/dΩ
, (2.24)

where the Born-level differential cross section for Møller scattering, derived from the
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tree diagrams on the left side of Figure 2.7, is

dσBorn

dΩ
=
α2

2s

(
t2 + tu+ u2

tu

)2

. (2.25)

The dominant term in the cross-section, which contains azimuthal dependence, arises

at the order α3 (where α is the fine structure constant) due to the interference between

the tree diagrams on the left side of Figure 2.7 and the box diagrams on the right

side of Figure 2.7. The dependence on ϕ at this level is given by [42]:

dσϕ

dΩ
= −α

3me

8
√
s
sin θ sinϕ

×
[

1

t2u2

(
3s(t(u− s) ln

(
−t
s

)
+ u(t− s) ln

(
−u
s

)
)− 2(t− u)

tu

s

)]
. (2.26)

In the equation above, s = 2meE, where me is the electron mass and E is the energy.

The variables t and u are described by t = −2EElab(1 − cos θlab) = − s
2
(1 − cos θ)

and u = −2meElab = − s
2
(1 + cos θ), respectively. Here, Elab represents the lab frame

energy and is calculated as Elab = E
2
(1+cos θ), and cos θlab is given by 1−me

E
(1−cos θ),

with θ being the center-of-mass (CM) frame polar scattering angle.

Note that AT
e demonstrates odd symmetry with respect to θ ↔ π − θ, or equiv-

alently, Equation 2.26 exhibits odd symmetry under t ↔ u. This symmetry arises

due to two identical electrons in the final state configuration. In the CM frame, if

one electron is positioned at (θ, ϕ), the other, according to leading order calculations,

appears at π − θ, ϕ + π. Given that sinϕ changes sign under the transformation

ϕ ↔ ϕ + π, the coefficient AT
e is similarly odd with respect to the transformation

θ ↔ π − θ. Such behavior significantly affects the integrated asymmetry that an

experiment observes, especially when integrating over a range of θ and ϕ, because it

is highly sensitive to the exact experimental acceptance. As a summary, symmetric

forward-backward acceptance in the CM frame, as elaborated in Chapter 3 for the

MOLLER experiment, results in a very small, yet non-negligible, Møller transverse

asymmetry.
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2.5.2 Transverse Asymmetry in Inelastic Electron-Proton Scat-

tering

In this section, the BTSSA in electron-proton inelastic scattering is studied when

a pion is observed in the final state. To compute the BTSSA, the differential cross

section is first determined for cases where both the electron and the pion are observed.

Figure 2.8 illustrates the various parameters involved in the interaction. Here, ki and

Figure 2.8: Diagram of the electron proton interaction, which decays into a nucleon
and a pion [43].

kf denote the momentum of the incoming and outgoing electrons, respectively. The

symbol q represents the momentum transferred from the electron to the proton (de-

fined by q = ki − kf ), while kπ indicates the momentum of the pion. The variables pi

and pf represent the momenta of the incoming and outgoing nucleons, respectively.

Additionally, θe signifies the polar angle of the outgoing electron (its angle in the

scattering plane), and θγ indicates the angle between the incoming electron and the

photon. The pion emerges at angles θπ and ϕπ. According to a standard approxima-

tion ([44] and [45]), the complete differential cross section for single-pion creation in

the one-photon exchange is [43],

dσ

d3kfdΩ
CM
π

= ϵ2fΓ
dσv

dΩCM
π

, (2.27)

where

Γ =
α2

2π

ϵf
ϵi

W 2 −m2
p

2mpQ2

1

1− ϵ
, (2.28)
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ϵi and ϵf are the energies of the incident and outgoing electrons, respectively, W is

the final state hadron mass, mp is the mass of the proton, Q2 = −q2, and ϵ represents
the photon polarization parameter (Appendix A of Reference [43]) and defined as:

1

ϵ
= 1 + 2

(
1 +

ω2
γ

Q2

)
tan2 θe

2
, (2.29)

ωγ = ϵi − ϵf , tan
2 θe
2

=
Q2

4ϵiϵf −Q2
. (2.30)

This parameter is provided in terms of the photon lab energy and electron lab scat-

tering angle. The cross-section denoted as dσv/dΩ
CM
π refers to the production of a

pion from a virtual photon (pi → pfkπ). Typically, when the beam electron is polar-

ized perpendicular to its direction of momentum, its spin orientation is determined

by an azimuthal angle ϕSe. Under these conditions, the differential cross-section can

be expressed as follows:

dσv
dΩCM

=
dσunpol

v

dΩCM

+ sinϕSe
dσn

v

dΩCM

+ cosϕSe
dσs

v

dΩCM

. (2.31)

The pion transverse asymmetry becomes

AT
π =

dσs
v/dΩCM

dσunpol
v /dΩCM

. (2.32)

The equation for the unpolarized cross section, which can be found in numerous

sources, such as [44] and [46], is

dσunpol
v

dΩCM

= A+ eB + eC sin2 θπCM cos 2ϕπ
CM +

√
2e(1 + e)D sin θπCM cosϕπ

CM. (2.33)

The cross sections with transverse beam polarizations are,

dσn
v

dΩCM

=
2me

Q
(1− e)D′ sin θπCM cosϕπ

CM,

dσs
v

dΩCM

=
2me

Q
(1− e)E ′ cos θπCM sinϕπ

CM sinϕCM.

(2.34)
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Explanation for constants A, B, C, D, D′, and E ′ can be found in references [44]

and [46]. Clearly, Equation 2.32 involves a complex formulation with numerous vari-

ables. Consequently, transverse asymmetry in inelastic electron-proton scattering is

not addressed; instead, an alternative approach is introduced in the following subsec-

tion to incorporate pion transverse asymmetry into the simulations for the MOLLER

experiment.

2.5.3 Implementing Transverse Asymmetries in the MOLLER’s

Simulation

To implement the asymmetry values for the simulation purposes, Equation 2.11 is

used as the longitudinal Møller asymmetry, and Equation 2.24 is used as the transverse

Møller asymmetry with the vertical and horizontal components in the azimuthal plane

as follow:
ATV

e (ϕ) = AT
e sin(ϕ),

ATH
e (ϕ) = AT

e sin
(
ϕ− π

2

)
.

(2.35)

For the longitudinal and transverse pion asymmetries, due to the incompleteness

of Equation 2.21 and the complexity of Equation 2.32, as explained previously, the

findings from the Qweak experiment [47] and their associated uncertainties are im-

plemented. As it is detailed in Section 5.3.1, in an ancillary measurement of the

Qweak experiment, the beam energy was increased to 3.35 GeV to measure a small

(approximately 0.1%) contamination from pions and other charged hadrons at higher

energies. In this particular measurement, the value for the longitudinal pion asym-

metry is 25.4± 9.0 part per million (ppm), and for the transverse pion asymmetry, it

is 60.1± 19.3 ppm. The dependency of these asymmetry values on the polar angle θ

is defined as:

AL
π = (25.4− 9.0) + 2× 9.0×

(
θ − θmin

θmax − θmin

)
ppm,

AT
π = (−60.1− 19.3) + 2× 19.3×

(
θ − θmin

θmax − θmin

)
ppm,

(2.36)
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where AL
π is the longitudinal pion asymmetry, and AT

π is the transverse pion asym-

metry. θmin is zero degrees, and θmax is two degrees, both measured with respect to

the beam direction, defining the acceptance of the experiment for the pions. The

dependency on the azimuthal angle ϕ is defined as:

ATV
π (ϕ) = AT

π × sin(ϕ),

ATH
π (ϕ) = AT

π × sin
(
ϕ− π

2

)
,

(2.37)

where ATV
π is the vertical component, and ATH

π is the horizontal component of pion

asymmetry in the azimuth plane. All these modifications and implementations are

available in the development branch of the remoll repository [48]. The rationale

for defining the asymmetry values according to Equation 2.36 is to select a model

consistent with the Qweak experiment within the acceptance range of the MOLLER

experiment. This model is entirely arbitrary because we do not have information

about the kinematic dependence of the pion asymmetries.

The dynamics of the transverse asymmetry were briefly examined, focusing on

the crucial role of electron polarization orientation. Building upon this foundation,

a Bayesian analysis method is introduced in Chapter 5. This method will be applied

to extract components of the Møller asymmetry and pion asymmetry, along with

their associated uncertainties, considering the effect of transverse components of the

polarization.

To this end, the focus has been on the theoretical aspects of particle interac-

tions before they reach the detection system. This exploration has included helicity,

electroweak theory, and various scattering processes, emphasizing their roles in un-

derstanding parity violation. As we move from this theoretical groundwork, the next

section will direct our attention to how these particles interact with matter. We will

investigate how charged particles traverse through materials, a key aspect for advanc-

ing our understanding of particle detectors and interpreting experimental data.
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2.6 Passage of Charged Particles through Matter

Following the discussion on the theoretical aspects of particle interactions before

reaching the detection system in the previous section, the focus now is on the sub-

sequent stage of these interactions: the passage of charged particles through matter.

This process is crucial for particle detection, as it involves the interaction of particles

with a detector medium, leading to energy transfer that can be observed and quan-

tified. As a particle traverses through matter, there is a certain probability that it

will interact with either the nuclei or the electrons present in that material. This

probability is proportional to the thickness of the material and the number of target

particles per unit volume within it. Additionally, the nature of the interaction will

also influence this probability.

In the context of heavy charged particles, such as charged pions, which have a

mass greater than that of an electron, their traversal through matter is predomi-

nantly influenced by ionization energy loss. Although nuclear interactions are also

possible, they are not the focus of this discussion. As these heavy charged particles

move through a material, they encounter the electromagnetic fields of electrons and

nuclei, leading to collisions. The nature of these interactions varies depending on

whether the particle collides with an electron or a nucleus. When a charged parti-

cle interacts with a nucleus, it primarily changes trajectory due to transferring some

of its energy to the nucleus. This interaction often results in minimal energy loss

for the particle but can significantly alter its path, sometimes causing a pronounced

deflection. In contrast, interactions with electrons typically involve the transfer of

a larger portion of the particle’s momentum to the electron, leading to considerable

energy loss. However, these interactions usually have a relatively minor effect on

the particle’s trajectory. This contrast highlights the different roles electrons and

nuclei play in the passage of a charged particle through matter. While ionization is

the primary energy loss, collisions with nuclei are responsible for the most signifi-

cant changes in the particle’s path. As a result of these interactions, the movement

of a charged particle through the material leaves a trail of excited atoms and free

electrons. While most of these electrons receive only momentum, a fraction of them,
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known as δ-electrons, acquire enough momentum to travel noticeable distances within

the material. These δ-electrons, characterized by their significant energy, can further

excite or ionize surrounding atoms.

The primary energy loss for a high-energy charged particle in such interactions,

predominantly with electrons, is often described as ionization energy loss. This con-

cept will be further explored in subsection 2.6.1. Additionally, multiple scattering,

which arises from the unpredictable deviation in a particle’s path due to collisions with

anything, will be examined in subsection 2.6.2. Furthermore, bremsstrahlung, electro-

magnetic radiation emitted when a charged particle accelerates or decelerates in the

field of another charged particle, and Cherenkov radiation, produced when charged

particles move through a material faster than the speed of light in that medium, will

be discussed in subsections 2.6.3 and 2.6.4, respectively. Finally, subsection 2.6.5 ex-

amines the interactions of charged particles with a lead absorber, referred to as the

Lead donut in the MOLLER experiment, with additional discussions in Sections 3.4

and 4.1.

2.6.1 Ionization

As mentioned before, in the interaction of charged particles with matter, one

of the key phenomena is ionization energy loss. The Bethe-Bloch equation, which

represents mathematically the energy loss caused by a charged particle due to its

interactions with electrons in the material, is essential in understanding this process.

This equation [49], is presented below:

−dE
dx

= ρK
Z

A

z2

β2

(
1

2
ln

(
2mec

2β2γ2Tmax

I2

)
− β2

)
, (2.38)

where dE
dx

is the average energy loss of the particle per unit path length in the medium,

ρ is the material density in g/cm3, K is a constant equal to 0.307 MeV cm2/g, Z is

the dimensionless charge of the nuclei, A is the relative atomic weight, z is the charge

of the particle in units of the electron charge e, β is the velocity of the particle in

units of the speed of light, γ is the Lorentz factor, given by γ = 1√
1−β2

, me is the
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electron rest mass, Tmax is the maximum energy transfer to an electron, and I is the

mean excitation energy of the material. For a detailed derivation of this equation, see

the calculations provided in [50]. For all incoming particles, excluding the electron,

Tmax ≈ 2β2γ2mec
2. In the case of electrons, the most significant energy transfer

occurs through Møller scattering (Section 2.3) from atomic electrons. Given that this

involves the scattering of identical particles, the maximum energy transfer is half that

of the maximum transfer for heavier particles, Te,max = 1
2
Tmax.

The simplified or classic form of the Bethe-Bloch formula has been included. To

consider various effects, the equation for the energy loss rate of charged particles in

a medium has been expanded to include corrections and terms [51]. Several of these

corrections consist of:

1. Density Effect: Particles moving rapidly through a medium at high energies

can induce polarization in the medium. At extremely high energies, this po-

larization reduces the particle’s effective electric field, consequently reducing

energy loss.

2. Shell Corrections: The free-electron model of atomic electrons is the one

used in the condensed Bethe-Bloch formula. In reality, electrons are bound

within atomic shells, which impacts how they react to a passing particle. This

correction accounts for the fact that electrons are not free to move around but

are bound within specific atomic shells.

3. Barkas and Bloch Corrections: These corrections consider the particle’s

charge, illustrating why electron-electron interactions cause negatively charged

particles to traverse through a material slightly differently compared to posi-

tively charged particles. The Barkas correction is particularly important when

the particle’s velocity is comparable with the speed of orbital electrons of the

target material.

4. Violation of the Born Approximation: The Born approximation’s assump-

tions, which were used to derive the Bethe-Bloch equation, break down at very
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high energies, requiring corrections. This is particularly true for light parti-

cles, such as electrons or positrons at very high energy, where bremsstrahlung

emission represents the primary energy loss mechanism.

5. Spin Effects: Additional corrections are required for spin-half particles, such

as electrons, due to the quantum mechanical properties associated with their

spin. This is particularly important for particles with a small mass, such as

electrons, which can be significantly deflected due to a single collision.

In addition to the general principles of ionization energy loss discussed above, it

is insightful to consider a specific example, the energy loss rate (−dE
dx
) of muons as

they travel through water (H2O). This example demonstrates the application of the

Bethe-Bloch equation in a real-world context. It illustrates how these principles are

relevant to the study of cosmic rays, as will be further discussed in Section 4.4.1.

The discussion here is focused on a muon traveling through H2O (ρ = 1.0 g/cm3).

However, the energy loss can be scaled to another material by simply multiplying by

the density (in g/cm3) of the material. As shown in Figure 2.9, there are three regions

for a muon traveling in water. The first region is the sub-relativistic region: Ek < mc2,

the second one is the ionization region: Ek > mc2 and E < 400GeVm2/m2
µ, and

the last one is the radiation region: E > 400GeVm2/m2
µ. In the sub-relativistic

domain (Muon: Ek < 100 MeV), the rate at which particles lose energy per unit

of distance increases. This means that particles rapidly decelerate upon entering

this zone. In the high-energy radiation domain (Muon: Ek > 400 GeV), energy

loss occurs through processes such as bremsstrahlung, pair production, and nuclear

interactions, as discussed in the subsequent subsections. In the ionization region, most

of the energy of cosmic ray muons is observed, where they possess a mean energy of

approximately 4 GeV at sea level [53], as indicated by a blue marker in Figure 2.9.

This region is of particular interest as the rate of energy loss is almost steady (it

ascends logarithmically), maintaining an average energy loss rate of 2.2MeV/cm in

a substance with a density of 1.0g/cm3, across numerous magnitudes. The minimum

here, represented by a red star in Figure 2.9, denotes the point where the muon

becomes a minimum ionizing particle (MIP) and achieves peak penetrative capacity.
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Figure 2.9: Energy loss per centimeter for a muon passing through water (H2O, with
a density of 1.0 g/cm3). The blue dot signifies the average energy level of cosmic ray
muons at sea level, 4 GeV, while the red star marks the point at which the muon
exhibits minimum ionization [52].

To estimate the penetration depth of a standard cosmic ray muon, one can divide

the energy by 2.2MeVcm2/g and multiply by the absorber’s density. This calculation

method will be used in Section 4.4.1, where cosmic ray testing is discussed more

thoroughly.

This exploration of ionization energy loss, particularly through the application

of the Bethe-Bloch equation and its adaptations, underscores the intricate nature

of particle interactions in various materials. The specific case of muons in water

exemplifies these principles and is a foundational reference for further detailed studies

in cosmic ray testing, as discussed in Section 4.4.1.

2.6.2 Multiple Scattering

Transitioning from the study of ionization, which is concerned with energy loss,

multiple scattering is characterized by changes in the direction of particle movement.

Multiple scattering occurs when charged particles interact with the nuclei in a ma-

42



terial, leading to a series of deflections. For minor angular deviations, these changes

in trajectory typically follow a Gaussian distribution. The root mean square of the

scattering angle, denoting the average directional change for a particle traversing a

given material thickness L, is mathematically represented as follows[54]:

√
< Θ2 > =

z

pcβ
(20MeV )

√
L

X0

,

1

X0

≈ 4αr20
ρNA

Ar

Z(1 + Z) ln

(
183
3
√
Z

)
.

(2.39)

In the provided equation, Θ represents the scattering angle relative to the incoming

particle direction, measured in radians. The term p denotes the momentum of the

incoming particle, while X0, known as the radiation length, indicates the material’s

thickness where the energy of the charged particle decreases by a factor of e, charac-

terizing the depth of interaction of charged particles within a material. The material’s

density and nuclear charge significantly influence X0. Additionally, NA is Avogadro’s

number, α is the fine structure constant (approximately 1/137), and r0 is the classical

electron radius (2.82× 10−15 meters). These parameters, combined in the equations,

quantify the deflection of charged particles as they interact with nuclei, providing a

statistical measure of multiple scattering effects in terms of angular deviations, which

typically follow a Gaussian distribution. A more detailed representation of radiation

length, beyond the rough approximation given in Equation 2.39, can be found in [51],

which offers a more precise but complex form.

2.6.3 Braking Radiation (Bremsstrahlung)

Following the exploration of ionization and multiple scattering, breaking radiation

is another critical phenomenon in interacting charged particles with matter, com-

monly known as bremsstrahlung. This electromagnetic radiation is produced when

a charged particle is accelerated or decelerated in the field of an atom or nucleus.

Bremsstrahlung occurs due to collisions between charged particles and nuclei, leading

to deviations in their trajectories and the emission of radiation. While any acceler-

ated charged particle can produce bremsstrahlung, it is predominantly observed and
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more intense for lighter particles such as electrons and positrons [55]. In other words,

except in cases of extremely high energies, the radiation released by particles other

than electrons or positrons is negligible. As shown in Equation 2.39, the radiation

length (X0) determines the radiation that electrons and positrons emit. As a result

of bremsstrahlung, an electron’s average energy loss is given by:

E(x) = E0e
− x

X0 . (2.40)

It has been found that the energy of the charged particle is directly related to the

energy loss from bremsstrahlung. Above a certain threshold energy, EC , the energy

reduction caused by bremsstrahlung exceeds the energy reduction caused by ionization

for electrons. This threshold energy can be estimated by EC = 800MeV
Z+1.2

and is affected

by the charge of the atomic nuclei in the material. Bremsstrahlung decreases by

a factor of (melectron/M)2 for particles of mass M that are different from electrons.

Therefore, bremsstrahlung is negligible for particles other than electrons and positrons

at energies below 1 TeV.

2.6.4 Cherenkov Radiation

When charged particles traverse a material at velocities exceeding the speed of

light in that medium, they emit Cherenkov radiation. This radiation is visually evi-

dent as a distinct blue or ultraviolet cone of light because the emitted light is in the

visible and ultraviolet spectrum, where shorter wavelengths (blue and ultraviolet)

dominate due to the higher energy of the emitted photons [56]. As these particles

move through the medium, they induce polarization due to their electric field. After

their passage, the medium depolarizes, reverting to its initial state. This shift in polar-

ization produces an electromagnetic disturbance that propagates at light speed. This

rapid polarization and subsequent depolarization leads to the emission of Cherenkov

photons. Figure 2.10 depicts two distinct behaviors of charged particles:

1. Particle’s Speed < Speed of Light in Medium: Electromagnetic distur-

bances, originating from the medium’s polarization and subsequent depolariza-
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tion, travel faster than the particle. At distances far from the particle’s path,

these disturbances often cancel each other out due to the symmetric distribu-

tion of the emitted waves. However, if the particle is moving near the speed

of light in the medium or if the medium has significant inhomogeneities, the

disturbances may not cancel out completely, leading to detectable effects.

2. Particle’s Speed > Speed of Light in Medium: The electromagnetic dis-

turbances travel more slowly than the particle, converging into a unified wave-

front. These disturbances synchronize in phase, producing a noticeable pertur-

bation wave. The direction of this wave is determined by the particle’s velocity

and the speed of light within the medium.

Figure 2.10: Left: The particle moves at a velocity below the medium’s speed of light.
Right: The particle moves at a velocity exceeding the medium’s speed of light [54].

Given the geometric context of the situation, the angle between the particle’s path

and the wavefront can be readily calculated. Refer to the right triangle depicted on

the right side of Figure 2.10, where the two sides of this triangle are given lengths of

ct/n and vt. The Cherenkov angle, θc, can be derived as follows:

cos(θc) =
(c/n)t

vt
=

c

nv
. (2.41)

Therefore, the Cherenkov effect is the emission of optical photons caused by the

energy deposited from the charged particles in the direction indicated by Equation
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2.41. The strength of the Cherenkov effect can be determined using fundamental

principles by resolving the Maxwell equations with appropriate boundary conditions

[54]. This results in:

d2E

d(ℏω)dx
= ℏω

z2α

ℏc

(
1− c2

n2v2

)
= ℏω

z2α

ℏc
sin2(θc) for v >

c

n

d2E

d(ℏω)dx
= 0 for v <

c

n
, (2.42)

where E represents the total energy radiated as Cherenkov photons, ℏω denotes the

energy of a single Cherenkov photon, z is the charge of the particle, α is the fine-

structure constant (approximately 1/137), ℏc is a physical constant with a value of

197× 10−9 eVm, c is the speed of light in a vacuum, n is the refractive index of the

medium, and v is the particle’s speed. The term sin2(θc) highlights why Cherenkov

radiation is a visually evident continuous spectrum, but rises toward the UV, as it

relates to the angle and intensity of emitted photons detected by PMTs in particle

detectors. It is evident that Cherenkov radiation is emitted when v > c
n
. Derived

from this condition, the threshold kinetic energy, beyond which Cherenkov radiation

becomes possible, is defined as:

Ethreshold = mc2

(√
n2

n2 − 1
− 1

)
. (2.43)

This threshold signifies the point where the particle’s kinetic energy becomes sufficient

to enable the emission of Cherenkov radiation. By dividing Equation 2.42 by ℏω, the
number of Cherenkov photons emitted per energy interval of the photon and for each

unit of length is determined. Thus, the number of Cherenkov photons produced by a

charged particle in one centimeter of a material within the visible range is given by:

N =
z2α

ℏc
sin2(θc)

∫ 3.26eV

1.65eV

dE

∫ 10−2m

0m

dx. (2.44)

Once the number of Cherenkov photons produced per unit length of the particle’s

path in the medium has been calculated using Equation 2.44, the next step is estimat-
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ing the total energy loss due to Cherenkov radiation. This is achieved by multiplying

the number of photons by the average energy of a single Cherenkov photon in the

visible range. The average energy of photons in the visible spectrum is approximately

2.44 eV, Eaverage =
Eviolet+Ered

2
. This value represents the typical energy carried by a

single photon emitted due to the Cherenkov effect within the visible light range. The

total energy loss due to Cherenkov radiation, Eloss, over a given path length L in the

medium, can be estimated by the following calculation:

Eloss = N × Eaverage × L, (2.45)

where N is the number of Cherenkov photons produced per unit length as calculated

from Equation 2.44, Eaverage is the average energy of a Cherenkov photon (2.44 eV),

and L is the path length of the particle in the medium. This equation provides a

means to quantify the energy loss of a charged particle as it traverses a material. It

is important to note that this energy loss is typically a small fraction of the particle’s

total kinetic energy. Still, it’s crucial to understand the Cherenkov effect and its

applications in particle detection.

2.6.5 Interactions of Charged Particles with a Lead Absorber

As the final discussion of this section, the interactions of charged particles with a

lead absorber, known as the Lead donut in the MOLLER experiment, are examined.

Section 3.4 describes the placement of the Lead donut following the main detector

system and preceding the pion detector, functioning to filter out both high- and

low-energy electrons, thereby selectively allowing pions to enter the pion detector.

Section 4.1 explores optimizing the geometry and placement of the Lead donut to

enhance the pion detector system’s performance. Here, to visually complement the

theoretical discussion of particle interaction in the lead, Figure 2.11 depicts the var-

ious interaction mechanisms experienced by electrons and positrons in the lead [57].

The plot demonstrates that ionization is the predominant energy loss mechanism for

electrons and positrons at lower energies, while bremsstrahlung becomes more sig-
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Figure 2.11: Energy loss mechanisms for electrons and positrons in lead are shown as
fractional energy loss per radiation length. The x-axis represents the kinetic energy in
Mega-electron Volts (MeV), and the y-axis shows the normalized energy loss − 1

E
dE
dx
.

Ionization (red curve) dominates at lower energies, while bremsstrahlung (blue curve)
prevails at higher energies, with additional processes like Møller scattering for elec-
trons (dark green curve), Bhabha scattering for positrons (light green curve), and
positron annihilation (brown curve) also illustrated [57]

nificant at higher energies. For instance, electrons with an energy level of 11 GeV

within the Lead donut undergo substantial energy loss due to bremsstrahlung, ob-

structing most electrons from penetrating the pion detector system. This justifies

the theoretical placement of a Lead donut ahead of the pion detection system, as

it effectively stops low-energy electrons through ionization and high-energy electrons

through bremsstrahlung.

After discussing the theoretical foundations of charged particle interactions with

matter and understanding the various phenomena such as ionization, multiple scat-

tering, bremsstrahlung, and Cherenkov radiation, it becomes essential to explore the

selection criteria for the active medium of the pion detector, as well as the methods for

detecting and analyzing the interactions. The discussion of the active medium for the

pion detector and the PMTs, which are designed to convert the physical phenomena
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described earlier into measurable electrical signals, is deferred to Chapter 4 for con-

sistency, as all aspects of the pion detector are explained in that chapter. Subsection

4.1.1 focuses on the specific requirements and properties that make UV-transparent

acrylic (Lucite) an optimal choice for the pion detector in the MOLLER experiment.

Subsection 4.1.2 Covers the PMTs, detailing their critical role in the detection pro-

cess, the necessary characteristics, and the rationale for selecting the ET Enterprise

9125B model [58] as the PMT for the pion detector in the MOLLER experiment.

As in any research process, following the theoretical groundwork (Chapter 2) and

the design and simulations (Chapter 4), the next step involves verifying the simulation

results. In this study, the verification of the optimized pion detector design is carried

out through cosmic testing and beam testing. The introduction to these tests, along

with the underlying physics, is explained in the next section. If you are familiar

with the field, you may skip the section. However, if you are new to the field, it is

recommended to read it for a better understanding.

2.7 Verifying the Simulation Results: Cosmic Test-

ing and Beam Testing

This section introduces cosmic testing and beam testing in validating theoretical

models and simulations against experimental data, particularly within the pion de-

tector of the MOLLER experiment. Section 2.7.1 provides a historical background

and an overview of the fundamental principles underlying cosmic rays. In Subsection

2.7.2, the focus is on the Mainz Microtron (MAMI), an electron beam accelerator.

A historical and technical overview of the MAMI facility is provided, with particular

attention given to the MAMI B stage, which hosted the beam tests for this research.

2.7.1 Cosmic Rays and Cosmic Testing

The foundation of cosmic ray research was established in the early 20th century,

significantly influenced by Victor Hess’s experiments in 1912 [59]. Hess discovered a

notable correlation between altitude and the rate of ionizing radiation in the Earth’s
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atmosphere. During his ascension in a balloon, he observed an increased discharge

frequency in his electroscope, leading him to conclude that higher altitudes were asso-

ciated with higher radiation levels. This observation ultimately led to his recognition

with the Nobel Prize in physics in 1936 for the discovery of cosmic rays [60].

The Earth continuously receives a stream of particles known as cosmic rays.

Around 74% of these particles consist of ionized hydrogen or protons. A further 18%

originates from helium nuclei, which include two protons and two neutrons, while

heavier elements makeup just a small fraction [53]. Most cosmic rays that we detect

on Earth are of such high energy that their kinetic energy far exceeds their rest mass

energy (with Ek

mc2
> 1), classifying them as relativistic. When a cosmic ray of primary

origin strikes an atomic nucleus in the Earth’s upper atmosphere, typically oxygen

or nitrogen, the collision energy can be significant enough to disrupt the incoming

particle and the nucleus via a nuclear interaction. This collision often results in the

creation of transient particles known as mesons [61], predominantly pions (π+, π−,

π0) and kaons (K+, K−, K0). The charged pions (π+) undergo decay within ten

nanoseconds [62], yielding muons of the same electric charge and neutrinos. The de-

cay of charged kaons (K+) into pions or directly to muons is somewhat more complex.

Neutral mesons (π0, K0) decay almost instantaneously (on the order of 10−17 seconds)

into gamma rays. Given their ability to cover more distance prior to decay compared

to their neutral counterparts, charged mesons can engage in further interactions with

atmospheric molecules. Such interactions may trigger additional nuclear reactions,

which, governed by the strong force due to the quark content of mesons, could lead

to generating even more mesons, thereby amplifying the particle shower initiated by

the initial cosmic ray collision. Despite the shielding provided by the atmosphere,

which largely blocks primary cosmic rays from reaching the surface, the secondary

particles produced can occasionally descend through the atmosphere to the ground.

A depiction of cosmic ray interaction is provided in Figure 2.12.

Cosmic ray muons (µ±) are produced from the decay of charged mesons. When

a charged pion decays, it almost always generates a muon of the same charge (and

a muon-neutrino) with a likelihood of 99.98%, as shown in Equation 2.46, while a

charged kaon converts into a muon (and a muon-neutrino) 63.5% of the time, as
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Figure 2.12: A schematic illustration of the various decay processes and interaction
sequences occurring from the interaction of a cosmic ray with Earth’s atmosphere
[52].

indicated in Equation 2.47 [63].

π± → µ± + νµ(νµ) (99.98%) (2.46)

K± → µ± + νµ(νµ) (63.5%) (2.47)

Between 80% to 90% of the muon flux at the Earth’s surface at energies of interest

(GeV to TeV scale) originates from pion decay, with the remainder from kaon decay

[64]. Muons, having a mass of 105.65 MeV, are highly penetrating particles that

primarily interact through ionization (2.6.1) as they traverse the atmosphere. This

characteristic allows them to reach the Earth’s surface in significant numbers. The

average muon energy at the Earth’s surface is expected to be more than a few GeV,
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often cited as approximately four GeV [53]. Muons that reach the Earth’s surface

without decaying contribute to the low-energy electromagnetic component of cosmic

ray showers at sea level. Note that when cosmic ray muons enter the Earth’s atmo-

sphere at steeper angles relative to the vertical, they have to cover a substantially

increased distance and consequently pass through more material before being detected

at the Earth’s surface. Therefore, it is anticipated that the intensity of cosmic ray

muons will depend on the square of the cosine of that angle [53].

The energy loss rate of a muon traveling through H2O was thoroughly discussed

in Section 2.6.1. As mentioned, to estimate the penetration depth of a standard

cosmic ray muon, the energy is divided by 2.2MeVcm2/g and multiplied by the ab-

sorber’s density. For instance, a 10 GeV muon will traverse around 17 m of concrete

(ρ = 2.7 g/cm3). However, what of other massive charged particles like protons, pi-

ons, and kaons? Though these are subject to energy loss through ionization, their

quark composition allows for interaction via the strong force, causing significant nu-

clear collisions that influence the particle’s path and energy trajectory. Muons are

distinctive in that they lose energy through ionization and do not engage in strong

nuclear interactions like protons or pions. This enables them to penetrate materials

with minimal energy loss due to collisions with electrons in the absorbers and minimal

deviation in their path.

The conclusion of the discussions in this subsection leads to the understanding

that cosmic testing involves the detection of muons with an energy of approximately

4 GeV. To validate the experimental setup, simulations can be conducted using this

specific particle and energy level.

2.7.2 Mainz Microtron (MAMI) and Beam Testing

To ensure the robustness and reliability of the results from the cosmic testing

phase, a series of beam tests were performed. This subsection focuses on the Mainz

Microtron (MAMI), an electron beam accelerator. A historical and technical overview

of the MAMI facility is provided, with particular attention given to the MAMI B

stage, which hosted the beam tests for this research. The Mainz Microtron (MAMI)
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is an advanced electron beam accelerator at the Institute for Nuclear Physics at the

University of Mainz [65], primarily used for hadronic physics experiments. The facility

has seen several upgrades and expansions since its inception, leading to different stages

known as MAMI A, MAMI B, and MAMI C.

In 1976, a race track microtron (RTM 1) was proposed as the initial stage of a

planned cascade of three microtrons to deliver a particle beam with an energy of up to

855 MeV. The RTM 1, with an extraction energy of 14 MeV, was completed in 1979.

By 1983, the RTM 2, also known as MAMI A, was finished, delivering 180 MeV.

The next stage, RTM 3 (MAMI B), which provided 855 MeV, became operational in

1990 as part of a Collaborative Research Centre (CRC 201). MAMI B was unique in

delivering a continuous particle beam of exceptional quality, never before achieved in

that energy range, with transverse emittances at 100 µA: horizontal 8π nmrad, vertical

0.5π nmrad, and an energy width of 13 keV. The installation of RTM 3 marked the

mechanical limit of the race track microtron concept, as any further energy increase

would require extremely large bending magnets. However, in 1979, a solution was

proposed, explored in the late 1990s and led to the 1999 proposal of the harmonic

double-sided microtron (HDSM) at 1.5 GeV, known as MAMI C.

Figure 2.13 depicts the Mainz Microtron (MAMI), illustrating its three main

stages: MAMI A, MAMI B, and MAMI C, along with associated experimental setups.

MAMI A begins the acceleration process, where electrons are initially accelerated to

180 MeV. MAMI B further enhances the electron energy to 855 MeV, highlighted

by its capacity to deliver continuous, high-quality beams. The most advanced stage,

MAMI C, achieves up to 1508 MeV, incorporating a Harmonic Double-Sided Mi-

crotron (HDSM) that surpasses previous energy limits. Additionally, the diagram

includes experimental areas like the Spectrometer Hall, which has setups for various

physics experiments. The beam testing related to this research was conducted at

MAMI B, and a red star marks the test placement. The test played a crucial role

in gathering essential data for developing and calibrating the pion detector. More

detailed information and technical data are available in [67].

Before exploring the details of the facility and apparatus of the MOLLER experi-

ment in chapter 3, the next section will discuss the MOLLER experiment simulation
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Figure 2.13: The floor plan of the MAMI facility, highlighting MAMI B and MAMI
C, and the location of the pion detector prototype beam tests are indicated by a red
star. This diagram illustrates the configuration and key components of the facility,
including the different stages of the microtron and experimental areas [66].

which is called remoll and available in reference [68].

2.8 MOLLER Experiment Simulation (remoll)

The simulation tool for the MOLLER experiment, known as remoll, is accessible

by compiling the source code. The most up-to-date branch is the develop branch,

which consolidates all modifications and, as of the date of this thesis, contains the

latest design updates for all subsystems.

In the remoll directory, two subdirectories are particularly important in the context

of this thesis:
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1. remoll/src: The src directory contains all source codes for various generators

such as beam, Møller electron, pion, elastic, inelastic, aluminum, etc. It also

includes codes for generating events specific to these generators. For this thesis,

the pion and Møller generators are primarily used, while the elastic and inelastic

generators are utilized at certain points for more accurate calculations (Section

4.2).

2. remoll/geometry : This directory houses the designs of all subsystems. Key

areas focused on in this thesis include geometry/detector/ThinQuartz/Detec-

torArray for the main detector (Section 3.4.1), geometry/showermax for the

shower-max detector (Section 3.4.3.1), geometry/donut for the Lead donut, and

geometry/pion/Lucite for the pion detector system (Section 3.4.3.2). The

pion detector system (Section 3.4.3.2) has seen significant design and modi-

fication efforts within geometry/pion/Lucite. The geometry/showermax has

been utilized to address low-energy particle showering issues (Section 4.2) and its

impact on the pion detector system (Section 3.4.3.2). Moreover, all simulation

results for the main detector, as discussed in Section 3.4.1, which are used in the

Bayesian analysis in Chapter 5, are extracted from geometry/detector/ThinQ-

uartz/DetectorArray.

In the remoll simulations and designs, the identification numbers for detectors

and particles are other essential aspects. For the pion detector, the active detector

with a detector ID of 8000 corresponds to the photo-cathode area of the PMT, which

is instrumental in detecting photo-electrons generated within the pion detector sys-

tem. The detector ID 8001 also represents the Lucite (pion detector’s medium 4.1),

allowing for calculating different particle rates within this area. Concerning particle

identification, remoll simulations employ the Monte Carlo particle numbering scheme

[69] to distinguish various particle types, such as electrons (-11), positrons (+11), pi-

ons (-211 and +211), and muons (-13 and +13). These particles are the primary

focus when calculating rates for different generators in Lucite (detector 8001). Fur-

thermore, the output tree variables in remoll [70] facilitate the generation of diverse

histograms. The installation and loading of the Geant4 and ROOT analysis packages
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enable all of these processes.

The CERN-developed Geant4 [71] simulation is a widely recognized toolbox for

simulating the passage of particles through materials. With a wide range of physics

models and a reputation for adaptability and precision, Geant4 simulates detailed

physical interactions and processes. These models apply to various experimental

conditions, from high-energy physics to medical physics. The accurate estimation

of energy deposition and secondary particle tracking is made possible by Geant4’s

thorough modelling of detector design and materials.

The ROOT analysis package [72], another essential tool in this study, is developed

at CERN and serves as a powerful computing framework specifically designed for data

analysis in particle physics. ROOT provides functions that enable researchers to

manage and interpret massive datasets. ROOT specializes in data storage, statistical

analysis, and visualization.

While the simulation tools provided by Geant4 and ROOT are indispensable for a

broad spectrum of particle interactions, this thesis necessitates a particular emphasis

on the pion generator. Our primary focus is the pion detector system, so a detailed

understanding and accurate modelling of this generator are essential. Therefore, the

specifics of the pion generator, central to simulating the interactions we aim to de-

tect and analyze, will be thoroughly explored. To describe the cross-section of the

pion generation in the context of virtual photon-nucleon interactions, Dr. Martin

D. Wiser brought a model in the 1970s [73]. This model, now referred to as the

Wiser parameterization, changed how we interpret these interactions. Including ba-

sic parameters like energy, momentum transfer, and pion angles was one of Wiser’s

notable characteristics in parameterization. The model describes pion production as

a two-step, sequential process. Initially, the incoming photon triggers an excitation

within the nucleon, causing it to transition into a delta resonance. Subsequently, this

resonance decays, resulting in the generation of a nucleon and a pion. Initially, the

Wiser parameterization was a semi-empirical formula carefully calibrated to match

the experimental data available. It has ever been widely used in electron scattering

experiments for modeling the background pion contributions.

The Geant4 simulation, the Wiser parameterization model, and the ROOT pack-
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age will all be used in the framework of this thesis to improve the design and opti-

mization of the pion detector system in chapter 4. Before exploring the details of the

pion detector system in chapter 4, which is the main focus of this research, the next

section will discuss the MOLLER experiment facilities and apparatus and show the

role of the pion detector system.
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Chapter 3

The MOLLER Experiment:

Facility and Apparatus

An overview of the MOLLER subsystems and their operational requirements is

provided in this chapter. The functional specifications define the performance and

functionality required to fulfill the MOLLER science objectives that are outlined in

Section 1.2. The goal of the experiment is to measure a very small parity-violating

asymmetry which requires measurement of the scattered electron flux at high rate

and attention to the statistical errors. The components of the MOLLER apparatus

are arranged as follows:

1. Liquid Hydrogen Target utilizes cryogenic liquid hydrogen as the primary

target for the MOLLER device.

2. Spectrometer consists of two seven-fold symmetry toroidal magnets and col-

limators designed to maximize the signal-to-background ratio and define exper-

imental acceptance.

3. Integrating Detectors comprises a set of quartz Cherenkov detectors, which

function as the primary detector elements for conducting high-rate, high-statistics

measurements in the experiment.

4. Tracking Detectors operates in a low-rate counting mode to calibrate the
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primary detectors, spectrometer optics, and background processes across the

full radial and azimuthal ranges.

5. Auxiliary Detectors includes additional shower-max detectors for redun-

dancy, pion detectors for background asymmetry monitoring, beam scattering

monitors for detecting false asymmetries, and scanner detectors for precision

alignment verification and background differentiation in asymmetry measure-

ments.

6. DAQ and Trigger integrates beam diagnostic monitors and facilitates data ac-

quisition readout in both high-rate (integrating) and low-rate (counting) modes.

Figures 3.1 and 3.2 show the MOLLER apparatus that will be installed in Hall A

at Jefferson Lab (JLab). This section provides a brief explanation of each subsystem’s

design, along with the functional requirements necessary to achieve the performance

and functionality needed to meet the MOLLER science goals, as detailed in Section

1.2.

Figure 3.1: A cutaway picture of the MOLLER experimental setup in Hall A with
some shielding removed. The beam direction is from left to right [74].
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Figure 3.2: An overview of the shielding enclosures for the MOLLER experimental
apparatus in Hall A. The beam direction is from left to right [74].

The coordinate system in use in Hall A is right-handed, with the positive Z axis

running parallel to the electron beam axis, the Y axis pointing vertically up, and the

positive X axis positioned beam left when looking at the detector system. The origin

of the experimental coordinate system is located at the hall center. The MOLLER

hydrogen target’s center is about 0.450 m upstream at (0,0,-0.450).

3.1 Polarized Beam, Monitoring, and Control

The MOLLER experiment requires up to 70 µA of an 11 GeV electron beam,

which is 90% polarized and aligned in the longitudinal direction. By employing pho-

toemission from circularly polarized laser light that hits a doped gallium arsenide pho-

tocathode, the polarized electron beam is produced [75]. Time windows are created

within the electron bunch train at a frequency of 1.92 kHz, with the beam’s longitudi-

nal polarization in each window assigned pseudo-randomly following a predetermined

32-window-pair pattern optimized to suppress 60 Hz noise. Window pairs are formed

by adjacent time windows with opposite helicities. The time-averaged responses of
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beam position monitors are used to determine the beam trajectory and energy for

each window. For a range of nuclear physics research with different requirements on

beam characteristics, the Continuous Electron Beam Accelerator Facility (CEBAF)

at JLab typically runs with > 100µA electron beam currents and > 85% beam polar-

ization in four experimental halls [76]. Even though the specific requirements for the

electron beam for MOLLER are similar to those of earlier parity-violation measure-

ments carried out at JLab, the increased experimental precision goal leads to more

demanding allowances for the stability of the beam under rapid helicity reversal and

control of the beam polarization. The technology used at JLab to meet these needs

is explained below.

3.1.1 Polarized electron source at CEBAF

As described previously and shown in Figure 3.3, the polarized electron beam

is generated through the photoemission of electrons induced by circularly polarized

light interacting with a doped gallium arsenide (GaAs) photocathode (Clayburn et

al., 2013). The electron beam’s polarization is determined by the polarization of

the incident laser light. Light from the 780-850 nm laser is linearly polarized and

then passes through the RTP Pockels cell. The Pockels cell receives a randomized

helicity signal and converts the linearly polarized light into circularly polarized light of

opposite helicities based on the sign of the input signal state. The generated circularly

polarized light then interacts with the GaAs photocathode, where the symmetric

response of the photocathode to the circularly polarized light ensures that the electron

beam’s transmission through the accelerator and into Hall A is unaffected by the

polarization of the electrons. The voltage delivered to the Pockels cell is crucial, as it

must be precisely controlled to correlate directly with any helicity-related asymmetry

observed in the electron beam. A precision asymmetry measurement requires a strong

and quick polarization reversal, which is only produced by the Pockels cell, even if

photocathode technology is an important part of creating the polarized electron beam.

The Pockels cell has been upgraded from a KD*P (potassium di-deuterium phosphate)

cell to an RTP (rubidium titanyl phosphate) Pockels cell at JLab, enabling the fast
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Figure 3.3: Diagram of the laser transport line that enables rapid electron beam
polarization reversal, modified from [74].

flip rates needed for MOLLER [77]. Also, a more stable source configuration will

be possible because the stronger electric field has been demonstrated to increase the

activated photocathode’s lifetime [78]. MOLLER experiment will benefit from these

source enhancements [79] as well as other improvements [80].

3.1.2 MOLLER Beam Requirements

The MOLLER experiment represents the continuation of a series of high-precision

parity-violation experiments that typically operate at small scattering angles and

measure very small asymmetries. These investigations’ challenges are variations in the

beam’s intensity, position, or profile, which will change the scattered flux that is being

detected. The final result reflects small parity-violating asymmetries if the variations

in the beam have a correlation to the electron helicity. Despite the fact that changes

are frequently measured and corrected, there is a finite precision associated with these

corrections, which could be a potential source for a false asymmetry or systematic

error. Therefore, helicity-correlated beam asymmetries (HCBA) form a potential

systematic error, and extremely strict HCBA control is necessary for the precise

measurement that is under consideration. Table 3.1 displays the beam performance

requirements for MOLLER to accomplish its scientific objectives. Table 3.2 compares

the conditions for HCBA during MOLLER with those found in earlier studies. The

HAPPEX [12], Qweak [16], PREX-II [18], and CREX [19] experiments are a few

examples of earlier parity studies. The MOLLER goals are expected to be achievable

given the plans for the new Pockels cell, among other crucial factors and technological
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advancements.

Table 3.1: Performance objectives for MOLLER’s parity quality beams [74].

Beam Defining Required 960Hz Cumulative Helicity
Property Equation pair random Correlation

fluctuations (full dataset)

Intensity Aq ≡ I0−I1
I0+I1

< 1000 ppm < 10 ppb

Energy AE ≡ E0−E1

E0+E1
= ∆E

2E
< 110 ppm < 1.4 ppb

Position Dx = ∆x ≡ x0 − x1 < 50 µm < 0.6 nm
Angle ∆θ ≡ θ0 − θ1 < 10 µrad < 0.12 nrad

Spot-size ∆σ/σ ≡ σ0−σ1
1
2
(σ0+σ1)

- < 10−5

Table 3.2: Comparison of MOLLER beam asymmetry requirements with the approx-
imate average magnitudes of asymmetries achieved in previous experiments [74].

HAPPEX-2 Qweak PREX-II CREX MOLLER
(achieved) (achieved) (achieved) (achieved) (required)

Intensity 400 ppb 30 ppb 25 ppb −88 ppb < 10 ppb
asymmetry
Energy 0.1 ppb 0.4 ppb 0.8± 1 0.1± 1.0 < 1.4 ppb

asymmetry ppb ppb
Position 1.7 nm 4.4 nm 2.2± 4 −5.2± 3.6 < 0.6 nm
differences nm nm
Angle 0.2 nrad 0.1 nrad < 0.6± 0.6 −0.26± 0.16 < 0.12 nrad

differences nrad nrad
size - < 10−4 < 3× 10−5 < 3× 10−5 < 10−5

asymmetry
(quoted)

3.2 Target System

Using a liquid hydrogen (LH2) target will enable the necessary rate of Møller

scattered electrons to be produced. The ideal target is LH2 because it provides a

substantial areal density (mass per unit area) of electrons for the minimum radiation

length, essential for effective interactions with incident particles. LH2 concentrations

greater than 8.5 g/cm2, representing this areal density, are required to reach the
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necessary scattering rate. The target will, therefore, be 125 cm long and require a

cryogenic system with a handling capability of 4.0 kW to maintain the system at

low temperatures and remove heat. The LH2 target will be the most powerful ever

constructed. The suppression of density fluctuations at the timescale of the helicity

flip rate is a critical design aspect from a physics perspective. Target density variation

must be less than 30 ppm at 0.96 kHz to avoid variation in the number of scattered

events. The target system’s design is grouped into six subsystems: vacuum system,

hydrogen gas service system, cryogenic helium service, target loop, motion system,

and control system.

Figure 3.4 displays the vacuum, cryostat, and motion systems. A system of vac-

Figure 3.4: Cryostat, motion, and target vacuum systems. The scale model is a 6-
foot-tall person [74].

uum pumps installed under the chamber maintains the target chamber’s vacuum. The

chamber has a platform that supports it on the beamline in Hall A. The cryogenic

target loop is located inside the target vacuum chamber. The liquid hydrogen pump,

the high-power heater, the Helium-hydrogen counterflow heat exchanger, and the cell

are the major elements of the target loop. Most of the target loop’s components

are located on top of the target chamber outside the vacuum space, and the target

loop is held inside the target chamber by a vertical motion mechanism. Helium and
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hydrogen gases are supplied to the target loop through separate closed gas circuits.

Instrumentation is installed on the target system to track it. Both hardware and

software tools are used to control the target.

A solid target ladder will be thermally coupled to the LH2 target cell’s bottom

to satisfy the requirements for beam alignment, backgrounds, and optical studies for

the MOLLER apparatus. A vertical lifter will supply a single-axis motion mechanism

during beam operations to place each necessary target on the beam line. The vertical

lifter will also provide a “no target in beam” setting for accelerator beam studies.

3.3 Spectrometer System

The acceptance of the experiment is determined by the spectrometer system,

which is optimized to maximize the signal-to-background ratio. It consists of two

toroidal magnet assemblies with seven-fold symmetry and a series of collimators,

as shown in Figure 3.5. Four collimators are positioned between the upstream and

downstream torus magnets: 1, 2, 4, and 5. Note that collimator 3 is not present;

it has been removed. These collimators ensure that only the scattering angles and

azimuthal angles that pass through collimator 2 are considered without variation from

other openings during the experiments. Upstream of collimator 1, there are also two

septant blockers, numbers 6 and 7. Additionally, some lead lintels are spaced farther

apart in radius and located at the same z-axis position as collimator 5. The magnets

provide the kinematic separation of the scattered electrons and distribute them across

the focal plane, which is crucial for determining the Møller asymmetry accurately.

Moving from the structural setup to the functional dynamics of the spectrometer, the

focus shifts to how its open design contributes to experimental efficacy.

3.3.1 Concept of the Open Spectrometer

The MOLLER spectrometer is an open type, which means it is not focused on

high resolution but on moving electrons away from the beamline. This design helps

to separate the electrons based on the different processes they undergo in the tar-
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Figure 3.5: Locations of collimators in relation to the toroids upstream and down-
stream [74].

get, allowing for the identification of Møller electrons specifically. Møller scattering

involves identical particles. Thus, the spectrometer can capture a full range of az-

imuthal angles even if part of the azimuth is blocked, as seen in Figure 3.6. Each

forward-scattered electron on one side of the beamline corresponds to a backward-

scattered electron on the opposite side in the laboratory frame. This configuration

ensures that all forward and backward scattered electrons on one side of the beamline

are captured, uniformly covering angular ranges around 90° in the center of mass

(COM) frame.

The lab scattering angles for MOLLER range from 6 to 21 mrad, corresponding

to COM angles between 60° and 120°, as illustrated in Figure 3.7. This configuration

allows for a large energy range for the scattered Møllers, from 2 to 8 GeV. The left

two graphs in Figure 3.7 show a one-to-one correlation between COM and scattered

electron energy.
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Figure 3.6: A scattering diagram on the left displays the scattered electrons from
two scattering events. The electrons with dashed lines come from one event, and the
straight lines belong to another. The closed sector, shown by the black trapezoids on
the right, receives one electron from each event, and the open sector, represented by
the grey and orange regions, receives the other electron from each event. Backward
scattered electrons are indicated by the orange color, whereas forward scattered elec-
trons are indicated by the grey color [74].

A deeper understanding can be gained by examining the primary acceptance col-

limator design depicted on the right of Figure 3.7 and comparing it with the design

in Figure 3.6. Both figures illustrate the segmented approach to capturing scattered

electrons. In Figure 3.6, the diagram highlights how different sectors (both open

and closed) are strategically used to capture electrons from two scattering events,

illustrating the physical layout of the acceptance collimator. Conversely, Figure 3.7

provides a view of how the spectrometer aligns with theoretical predictions of electron

scattering angles and energies, ensuring that the device optimally separates forward

from backward scattering within the specified energy and angular ranges.

Having established how the spectrometer’s design optimally guides electrons through

its acceptance collimators, the next focus is on observing outcomes on the detector

plane. The precise engineering of the spectrometer not only enhances the capture and

separation of scattered electrons but also significantly influences their distribution as

they reach the detector plane. The following section will explore how the varying

energies and angles of scattered electrons manifest in distinct spatial patterns on the

detector plane, ultimately assisting in the deconvolution of the Møller asymmetry

from background processes.
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Figure 3.7: For Ebeam = 11GeV , the two figures on the left show the correlation
between the lab and COM angles. The ranges of each quantity for the forward and
backward scattered electrons are shown by the colored bands in the θCOM vs. E

′

lab and
E

′

lab vs. θlab plots. The corresponding design for the primary acceptance collimator is
shown on the right [35].

3.3.2 Distribution on the Detector Plane

The distribution of various particle envelopes at the detector plane provides the

deconvolution of the Møller asymmetry. The collimators define angular acceptance,

and due to distinct energy-angle correlations among various processes, these result

in peaks appearing at separate radial distances following their kinetic separation by

the magnets. Additionally, the magnets influence the azimuthal particle distribution.

Electrons that travel downstream through the inner segments of the coils experience

azimuthal focusing. They become azimuthally defocused if they go through the space

between the coils’ outer legs. When the lower-energy Møllers are defocused until the

azimuth is filled, the rate density on the detector plane is decreased. The particle

distributions are illustrated in a single septant and across different radial ranges at
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the detector plane in Figure 3.8. The figure also shows the detector array concept

(see Section 3.4). The deconvolution of the asymmetries from the various background

processes is made possible by the segmentation of the detector array, which enables

varying ratios of Møllers to backgrounds in each of the detectors.

Figure 3.8: Left: Two-dimensional rate-weighted particle distributions within a single
septant. The beam center (x = 0, y = 0) is offset to the right of the plot. The lines
represent the quartz pieces in the detector array design, with open (red), closed
(blue), and transition (green) sectors denoting the quartz regions entirely within
open or closed sectors or partially spanning both. Particle distributions peak in ring
2 (ep particles) and ring 5 (Møller particles) from the center. Møller electrons are
distributed across the full azimuth, extending into adjacent septants. Right: Radial
rate-weighted distributions of Møller (blue), ep (green), and inelastic (red) particles
at the detector plane, showing their respective contributions to the overall rate [74].

3.4 Detector System

In the MOLLER experiment, a sophisticated detection system is utilized, as shown

in Figure 3.9. This system is designed to deliver high-precision measurements of the

scattered electron flux and comprises the main detector system, a tracking detector

system, and auxiliary detector systems.

In conducting such a precision experiment, the integration mode is predominantly

utilized, where signals are integrated over helicity time window to measure the scat-

tered electrons at a high rate in the order of MHz. The main integrating detector is

69



Figure 3.9: CAD layout of the MOLLER experiment apparatus highlighting the
detector system [74].

optimized to integrate the incident signal rather than track individual electrons, as the

high event rate makes implementing a finely granulated detector system for event-by-

event detection expensive. The measured asymmetry value requires corrections before

it can be interpreted as a measure of parity violation in Møller scattering. These cor-

rections account for background effects from other scattering processes, specifically

accommodating dilution factors and asymmetries, which are obtained using low beam

current in the counting mode. These measurements are performed using both tracking

and auxiliary detectors.

Tracking detectors calibrate the main detectors and the spectrometer optics using

Gas Electron Multiplier (GEM) detectors and trigger scintillators. The shower-max
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detector and the pion detector serve as auxiliary detectors, aiding in studying neutral

and low-energy backgrounds and determining background fractions. Additionally,

scattered beam monitors and scanner detectors, which are auxiliary detectors, are

utilized to monitor the flux of scattered particles. The subsequent sections will thor-

oughly discuss each of these detector systems.

3.4.1 Main Integrating Detectors

The main detector is the center of focus in the MOLLER detector system. Instead

of counting individual electrons as is usually done, this detector integrates the incident

signal. A quartz Cherenkov detector is connected to a light guide in each main

detector element. A PMT will then detect the Cherenkov light once it has been

transported.

Six concentric rings are formed by radial segmentation around the beamline [74].

Five are divided into 28 detector elements around the azimuth, and the Møller ring

(ring 5) is divided into 84 detector elements. Each ring’s azimuthal segmentation

is categorized as open, transition, and closed sectors, shown as different colors (red,

green, and blue, respectively) in Figure 3.8 in Section 3.3.2. The open sectors are

positioned along the mid-planes of the open acceptance semi-septants, while the closed

sectors are situated along the mid-planes of the closed semi-septants. The transition

sectors are located between these two areas. Consequently, each ring contains 28

segments. Specifically, ring 5 is further subdivided by a factor of three, resulting in

21 open sector modules, 21 closed sector modules, and 42 transition modules. In

contrast, the remaining rings each consist of 7 open modules, 7 closed modules, and

14 transition modules.

The CAD model for the main detector system is shown in Figure 3.10. The pur-

pose of dividing the main detector system into radial and azimuthal segments is to

measure the Møller distribution and evaluate the contributions from elastic and in-

elastic scattering. As mentioned earlier in this section, to achieve the goal of precision

in measuring the small Møller asymmetry in ring 5, a significant number of statistical

data is needed, which implies extremely high event rates in the detectors. While
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Figure 3.10: CAD representation of the full main integrating detector array, which
includes 224 thin quartz detectors (shown in the front barrel) and the shower max
detectors (depicted in the back barrel flare) [74]. The latter is thoroughly explained
in Section 3.4.3.1.

the average electron rate for all detectors is approximately 50 kHz/mm2, the peak

electron rate for the Møller ring can reach 1 MHz/mm2 in regions of the integrating

detectors [74]. This calls for the integration of a large number of overlapping pulses.

These considerations led the MOLLER experiment to select Cherenkov detectors that

are radiation-resistant, highly linear, and have a comparatively large active area (ap-

proximately 100 cm²). The most active detector sectors operate at average rates

ranging from one to several GHz. As a result of these high rates, it is impossible to

count individual pulses. Hence, integration mode operation is required. A continuous

current is produced at the photo-cathode in this mode as a result of complete individ-

ual pulse overlap. In contrast to pulse mode, this mode is sometimes called current

mode detection. Although the main detectors are primarily designed to operate in

integration mode, they also operate in the standard event-counting mode for track-

ing and diagnostic needs. In this mode, tracking chambers are located immediately
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upstream, and calibration tests with low beam current can be carried out to confirm

the detector’s alignment, acceptance, and response functions.

Understanding the segmentation and location of the main detector is essential

to understanding the functionality of the subsequent detectors in the system. As

the most important part of the system, the main detector is designed with specific

segmentation that is compatible with other detectors and the spectrometer system. In

Figure 3.11, the segmentation and z positioning are shown, with the left side showing

the segmentation and the right showing the z positioning. Six radial areas, known as

rings, and 28 azimuthal segments make up the active area of the main detector. Eight

detector modules are housed in each segment, although three are found in ring 5. On

the right plot of Figure 3.11, the position and orientation of the detector modules

with respect to the segment plates and the direction of the beam are depicted. To

Figure 3.11: Left: Frontal view of the main detector array, with the beam directed
toward the page. It comprises 28 azimuthal segments, marked in red and numbered 1
(to the left of the beam) through 28 (to the right of the beam). The septant zones are
denoted by the numbers S1 through S7, and the spectrometer coils are labeled from
A to G. Segment 1 aligns with spectrometer coil A and the initial segments of the
other detectors. Right: The front-aligned segment plate configuration of the detector
modules. The length of each module is adjusted to the placement of the sector, which
covers the designated radial region of the scattered profile, and the position of the
PMTs [74].

align the front sector orthogonal to the mean momentum direction of the scattered
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electron profile in the detector plane, the quartz sectors are tilted at an angle of 3°

with respect to the vertical (y) axis. Due to an additional tilt of the light guides,

which are inclined at an angle of 3° relative to the quartz, the entire module is rotated

by 6° with respect to the vertical axis. The light guides are rotated more than the

quartz sector, a strategic adjustment designed to reduce the background amplitude

from tracks passing through the light guides.

3.4.2 Tracking Detectors

The MOLLER experiment requires a tracking system to ensure accurate measure-

ments of the parity-violating Møller asymmetry and for diagnostic and calibration

purposes. A total of 28 identical Gas Electron Multiplier (GEM) detectors form the

MOLLER tracking system, which comprises four layers of GEM detectors in each of

the seven sectors discussed in Section 3.4.1. The system is located upstream of the

main integrating detectors and downstream of the drift region, as shown in Figure

3.9. There will be 14 identical scintillators in total, divided across two layers of plas-

tic trigger counters in each sector. The trackers are placed on a GEM Rotator that

enables the array to rotate around the azimuth for the measurements throughout the

full azimuthal acceptance. The tracking system verifies the optical properties and

acceptance of the spectrometer system, and the acceptance of the quartz detectors,

and measures the position-dependent light-output response of the quartz detectors.

Additionally, it studies the radial and azimuthal distributions of incident electrons

and neutral and soft backgrounds in the integrating detectors. It also helps identify

pion events with pion detectors, shower-max, and main detectors. The tracking sys-

tem operates primarily in counting mode during dedicated low-beam-current runs, as

opposed to the usual integrating method of asymmetry data collection.

3.4.2.1 GEM detectors

The MOLLER system requires extremely accurate mapping of particle pathways,

even when dealing with many particles spread across a large region. The Gas Electron

Multiplier (GEM) technology, created by F. Sauli [81] in 1997, offers a useful and
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economical method. This method uses small holes etched onto a Kapton foil coated

on both sides with copper and uses a gas-based amplification technique. Rapid signals

are produced by this amplification, or avalanche, which is constrained inside these

holes. To obtain high amplification and consistent performance, many GEM layers,

or amplification stages, can be arranged in a series. The operations of a triple (three-

foil) GEM chamber are shown in Figure 3.12. The result is a system with incredible

resolution, as good as 70 µm, with the ability to handle extremely high particle rates

of over 100 MHz per cm2.

Figure 3.12: A triple GEM detector’s operating mechanism [74].

The Geant4 simulation (Section 2.8) was used to determine the coverage area

needed for each GEM detector or tracking wheel, defined by its location along the

particle beam’s path. This considers electrons that scatter inside the target due

to Møller and electron-proton interactions and reach the quartz detectors. In the

simulation, the electrons that arrive at a specific sector at the nominal location of

the quartz detectors are selected, and their paths through each of the GEM layers

are tracked backward. Determining the required sizes of different GEM layers is

straightforward with backward tracking.
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3.4.2.2 Trigger Scintillators

In order to ensure full coverage of GEMs, the MOLLER experiment has 14 plastic

scintillator trigger counters that mimic the geometric layout of the GEM detectors.

These scintillators are made of EJ-208, an Eljen Technology product chosen for its

outstanding light output and absorption length. Regarding placement, the upstream

scintillator is positioned upstream of the first GEM, while the downstream scintilla-

tor comes before the fourth GEM on the same frame. Although a time resolution

of at least 2ns is preferred, the scintillators are not required to meet strict timing

specifications due to the readout from the tracking GEMs, which employs a 25ns

time binning. The requirement for a uniform detection efficiency for minimum ion-

izing particles at the 2% level over the GEMs active region is the scintillators’ key

performance characteristic. By achieving this level of uniformity, any trigger biases

in the reconstruction of the track distribution at the main detectors and during the

calibration of the spectrometer’s optics are reduced. Above 98% is the desired overall

efficiency in the active region.

3.4.3 Auxiliary Detectors

Additional detector systems are used to assess neutral, low-energy, and pion back-

grounds inside the main detection region. These systems allow for quantifying the

ratio, asymmetry, and optical response of charged pions in integrating detectors. They

also evaluate the spectrometer’s operation and provide sensitivity for identifying un-

expected background sources. Figure 3.9 shows that auxiliary systems consist of the

shower-max detector ring, pion detector ring, beam scattering monitors, and scan-

ner detectors. The ultimate goal of each system’s design and operation is to reduce

systematic error in the core integrating detector ring 5 asymmetry measurement.

The shower-max and pion detector rings are situated to intercept the maximum

Møller scattered flux after it has passed through the ring 5 detectors. To capture

the scattered flux at the outer edge of the collimated primary flux envelope, the

Large Angle Monitor (LAM) is positioned upstream of the GEM rotator. The Small

Angle Monitor (SAM), located symmetrically around the beamline next to the Hall
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A beam dump entrance, is set up to track the flux scattered from the target at very

small angles (about 0.1°). A small upstream (US) 2-D scanner and four downstream

(DS) linear scanners are also installed upstream of the SAM and the main detector.

The primary function of the DS scanner is to validate the spectrometer’s baseline

optics, including the placement, angular alignment, and functionality of the magnet

coils and collimator systems. The purpose of the US scanner is to map out the

event distribution that affects the main detector array in two dimensions during the

integrating mode.

3.4.3.1 Shower-max

The shower-max detector is a group of quartz-tungsten electromagnetic sampling

calorimeters designed to measure energy. It is farther away from the thin quartz

detector array and encounters the same particle flux as the central Møller ring 5.

With lower sensitivity to hadronic and low-energy charged backgrounds, it provides

an additional, energy-weighted measurement of the Møller signal. The azimuthal

segmentation in these thick quartz detectors is lower than in thin quartz detectors

because of the lateral dispersion of the showers. Each segmented section requires an

energy resolution of at least 25% when interacting with electrons between 3 and 8 GeV

to avoid significant statistical accuracy loss; this requires at least four tungsten and

quartz layers that alternate to reduce sampling variances. The shower-max detectors,

like the main detectors, have two operational modes: integrating mode and counting

mode.

As discussed in Section 3.4.1 and shown in Figure 3.10, the main detector barrel

structure’s downstream end incorporates the shower-max ring support structure. It

is centred on the beamline and has a z-location roughly 1.7 m downstream of ring

5. Full azimuthal coverage is provided by the 28 separate shower-max detectors

instrumented around the ring, shown on the left plot in Figure 3.13. Each shower-

max module covers the acceptance of three neighboring ring 5 modules in either an

open, closed, or transition semi-sextant zone, shown on the left plot in Figure 3.13.

However, the azimuthal segmentation of the shower-max ring is reduced by three
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times compared to ring 5. The design and material construction is the same for

each of the 28 detector modules. Each module comprises alternating layers of quartz

and tungsten, which together create the “stack” structure. As the electromagnetic

shower grows, a greater proportion of its charged, relativistic particles travel through

the progressively thicker layers of quartz and produce Cherenkov light. The resulting

Cherenkov light cone is efficiently directed into the light guide volume by the quartz

layers using total internal reflection. Most of the light is directed to the PMT by the

light guide in a single reflection.

Figure 3.13: Left: Geant4 simulation model for the shower-max detector ring with
support framing, left-side view. Right: The shower-Max ring structure in CAD. A
view of the shower-max ring from downstream, showing the modules’ attachment
to the ring and aluminum support components. The open and closed Semi-Septant
detectors are located upstream of the transition detectors. To avoid gaps, adjacent
detectors have a small triangular region of overlap.[74].

3.4.3.2 Pion Detector

Near the Møller peak, there is a potential for a small contamination of approxi-

mately 0.1% from pions and other charged hadrons. This contamination, originating

from processes with a very small cross-section but a very high analyzing power, could

cause a significant background asymmetry. It is important to directly determine the

dilution fraction and the asymmetry of this background. According to Geant4 sim-

ulations (Section 2.8) based on the Wiser parameterization for pion production [73],

the pion-to-Møller scattered electron flux ratio for the main detectors will be around

78



10−3. Any background asymmetry caused by these pions and their in-flight decay into

muons must be identified and corrected. Assuming the simulation result is correct,

the pion fraction equals 10−3 of the Møller electron flux, the MOLLER experiment

aims to quantify the pion asymmetry with a statistical precision of 100 ppb over an

estimated data collection duration of 50 days.

The pion detector system is made up of 28 matching acrylic Cherenkov detectors,

situated downstream of the shower-max detectors and housed within a lead (Pb)

absorbing donut, shown in the left plot of Figure 3.14 The system’s design requires a

Figure 3.14: Left: The Pion Detector System integrated into the Pb (lead) Donut.
Right: Section view of the Pb (lead) Donut.[74].

reduction in the impact of Møller electrons by more than a factor of 1000 while still

capturing a substantial proportion of the incoming pions. This allows the detectors

to measure the asymmetry in a sample that contains roughly equal amounts of pions

and Møller electrons based on the predicted initial pion-to-electron ratio. The lead

donut helps achieve this goal. In the initial design, Section 4.2, the lead donut and the

pion detector system were distinct entities. However, these two components have been

integrated into a unified system in the final design. The comprehensive documentation

of the optimization steps and their implications can be found in chapter 4, which forms

a core topic in this work.

The radial coverage of the pion detectors needs to adequately provide a sampling

of the main detector ring 5 because measuring the pions interacting with the Møller

ring is necessary. Due to the combination of small transverse beam polarization and
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potential large single-spin asymmetries in pion production 2.5, there may be notice-

able azimuthal variation in the measured pion asymmetries. The pion asymmetry

must, therefore, be measured by this detector across the entire azimuth. It is possible

to observe variations in pion asymmetry based on kinematics by dividing the pion

detectors along the azimuthal direction. To distinguish the open, closed, and transi-

tion portions of ring 5’s acceptance for each semi-septant, the pion detector system

is segmented into 28 sections in azimuth. It is sufficient to measure the fraction of

pion background in counting mode in one semi-septant of each type (open, closed,

and transition), as no substantial fluctuation in the pion flow along the azimuthal

direction is anticipated. The active volume of each detector is a rectangular shape of

UV-Transparent (UVT) acrylic, see Section 4.1.1, read out optically by a PMT, see

Section 4.1.2, which is attached to the center of the downstream side of the acrylic.

For each pion detector, a light-tight enclosure, Figure 4.9, is constructed within an

area on the downstream side of the lead donut.

3.4.3.3 Scattered Beam Monitors

Scattered Beam Monitors (SBM) are positioned at multiple points to detect any

potential false asymmetries caused by irreducible background interactions from scat-

tered beams interacting with collimators, beam pipes, and shielding. These include

small and large-angle scattered beam monitors (SAM and LAM), also known as lu-

minosity monitors, positioned where the scattering rates are likely equal to or greater

than those observed in the main Møller rate. Unlike the Møller rate, the expected

asymmetry is smaller. The detectors will be equipped with quartz Cherenkov de-

tectors and air-core aluminum light guides that channel the light to PMT. Diffuse

scattered beam monitors (DBM) are placed where secondary interactions from the

primary target are expected to produce scattered rates. These detectors consist of

PMTs connected directly to quartz Cherenkov detectors.
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3.4.3.4 Scanner Detectors

Small, adjustable detectors capable of operating in both integrating and event

modes for tracking measurements will be utilized at two different points in the ex-

periment. The upstream scanner, positioned between the GEM detector array and

the main detector array as seen in Figure 3.9, comprises two tiny, closely spaced

fused-silica radiators that are coupled to air light guides and read out by a PMT. To

remove background events that produce Cherenkov and scintillation light in the air,

the tube enclosing the air light guide will be evacuated using a roughing pump during

the scanner’s operation.

The downstream scanners, positioned between the SAM and pion detectors as

seen in Figure 3.9, differ from the upstream scanning detectors only in the size of

the air light guide. These detectors, which will be read out only in the integrating

mode, consist of four radially scanning linear scanners placed in exposed areas. Their

purpose is to verify the beam-based alignment of collimator 2 with 1-mm precision.

3.5 Data Acquisition, Trigger, and Analysis

The primary high beam-current integrating mode and the low beam-current count-

ing mode are the two modes in which the trigger and data acquisition (DAQ) systems

are designed to operate. When collecting high beam current data, the integrating

mode DAQ system mainly works with integrating analog to digital converter (ADC)

modules to take signals from detectors and beam monitors. This system synchronizes

the integration periods of the main detectors, beam monitors, and auxiliary detectors

using custom-built, low-noise ADC modules. The counting mode DAQ is used for

measurements with a low beam current where individual electron scattering events

can be observed. Combinations of the main detector components and scintillators

placed close to the GEMs tracking detectors are used to construct triggers. The

GEM, trigger scintillators, main quartz detectors, and auxiliary shower max, pion,

and scanner detectors will all benefit from this system’s accurate timing and pulse

size records. The MOLLER experiment will use a significant amount of JLab’s sci-
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entific computer capabilities, but it will also rely on an additional analytic cluster

to guarantee the required data analysis throughput. This is an essential element for

keeping track of the setup’s effectiveness. The DAQ, trigger, and analysis systems

are required to conform to the following requirements:

1. The network and event-building systems must accommodate a data rate of

roughly 130 MB/s during integration production operation. This guarantees a

throughput of 100% without downtime when data is being collected in produc-

tion integration mode.

2. The counting mode trigger must be able to make decisions based on input rates

between 10 kHz and 300 kHz. The ability to produce triggers from the specific

scintillator triggers or any combination of the quartz detector signals should be

provided.

3. During production at 1.92 kHz, the feedback and real-time analyzers must run

at almost 100% throughput without affecting the data acquisition dead time.

4. The concurrent processes that can run on the online analysis cluster should

sufficiently analyze 100% of the data flow quickly. Correlation analysis and

adjustments are part of this.

5. The local disc storage must have enough space to hold complete analysis output

files for evaluation and several days’ worth of raw data files ready to be staged

to the mass storage system.
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Chapter 4

Development of the Pion Detector

System: From Principles to

Practice

To correct the observed asymmetry in ring 5 and showermax for the background

contribution from pions (3.4.3.2), it is crucial to determine the flux and asymmetry

of pions (and their subsequent decay muons). This chapter details the pion detec-

tor system, which was specifically designed and developed over the course of my

graduate research project. It begins with a comprehensive examination of the funda-

mental physics and processes essential for pion detection. I discuss the optimization

strategies implemented in the simulation and then proceed to verify these strategies

through both cosmic and beam testing. Building on the insights gained from these

experiments, the chapter further details the selection of the Photomultiplier Tube

(PMT). The conclusion provides a comprehensive overview of the mechanical design,

highlighting the careful design considerations and engineering expertise that under-

pin the project. This emphasizes my direct involvement and contributions to each

development phase.
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4.1 Pion Detector System: Physics and Mecha-

nisms

Particle detectors are essential tools in physics for identifying and characterizing

particles [82]. One such detector is the pion detector used in the MOLLER exper-

iment. Like many others, this detector operates based on two critical components:

the active medium and the PMT. Subsection 4.1.1 explores the selection criteria for

the active medium, focusing on the specific requirements and properties that make

UV-transparent acrylic (Lucite) an ideal choice for the pion detector in the MOLLER

experiment. Subsection 4.1.2 is dedicated to the PMTs, crucial components in the

detection process. This part elaborates on the necessary characteristics and minimum

requirements of PMTs, emphasizing their various parameters, such as spectral range,

quantum efficiency, cathode, and anode currents.

4.1.1 Active Medium Selection Criteria

The active medium is crucial as it interacts with incoming particles, resulting

in the emission of light. For the pion detector in the MOLLER experiment, a UV-

transparent acrylic [83] known as Lucite is employed as the active medium. Lucite,

technically referred to as Poly(methyl methacrylate) (PMMA), is a synthetic polymer

derived from methyl methacrylate. This transparent thermoplastic is also known un-

der various brand names, including Plexiglas, Crylux, Hesalite, Acrylite, and Perspex.

Despite the low expected interaction rate of charged particles with the pion detectors,

only about 0.1% of the rate for the ring 5 integrating detectors, the pion detectors are

required to withstand a radiation dose of 0.2 MRad without significant performance

degradation [74]. This requirement is much less than that for integrating detectors

due to the filtration of electrons by the showermax detector and the lead donut. His-

torically, UV-transparent acrylics have been successfully used in past experiments

such as HAPPEX-I [12] and HAPPEX-III [84] at JLab. Eljen UV-transparent acrylic

(BC-800) [85] is particularly notable, maintaining over 50% optical transmission even

after receiving a radiation dose of 5 MRad, which is 25 times the anticipated total
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dose in MOLLER pion detector. The transmission curve in Figure 4.1 illustrates the

optical transparency of Lucite as a function of wavelength for different thicknesses

(2.54 cm, 7 cm, and 21 cm), based on measurements conducted at JLab. It demon-

strates that even at substantial thicknesses, Lucite maintains high transmission above

300 nm, ensuring efficient detection of Cherenkov photons, which predominantly fall

in the UV and visible spectrum. However, the 7 cm thickness is particularly impor-

tant for the MOLLER pion detector design, as it represents the planned thickness of

the active medium. This transmission range, combined with its radiation tolerance,

establishes Lucite as a suitable choice for the active medium in the pion detector.

Figure 4.1: Transmission curves of UV-transparent acrylic (Lucite) samples of varying
thicknesses (2.54 cm, 7 cm, and 21 cm), based on measurements conducted at JLab,
showing optical transmission in the wavelength range relevant for Cherenkov radiation
detection.

As discussed in Section 2.6.4, when charged particles traverse a material at ve-

locities exceeding the speed of light in that medium, they emit Cherenkov radiation.

There is a threshold kinetic energy beyond which Cherenkov radiation becomes pos-

sible. This threshold signifies the point where the particle’s kinetic energy becomes

sufficient to enable the emission of Cherenkov radiation. Given Lucite’s refractive in-

dex of 1.5 and the pion mass (mπc
2) of 139.570 MeV, the threshold kinetic energy for

producing Cherenkov radiation is 48 MeV, as calculated using Equation 2.43. This
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suggests that pions with kinetic energies above 48 MeV can generate Cherenkov ra-

diation in Lucite. The Cherenkov angle (θc) in Lucite, derived from Equation 2.41, is

approximately 48◦. According to Equation 2.44, 817 Cherenkov photons are emitted

when a single pion travels through one centimetre of Lucite. The total energy loss due

to Cherenkov radiation over this distance can be estimated using Equation 2.45 by

multiplying the number of Cherenkov photons by the average energy of each photon,

2.44 eV. This results in a total energy loss of approximately 0.002 MeV per centime-

tre, much lower than other energy loss mechanisms, such as ionization. As shown in

Figure 4.1, the optical transmission of Lucite ensures that a significant portion of the

emitted Cherenkov photons can be efficiently detected, further validating Lucite as

an appropriate choice for the active medium in a pion detector due to its low energy

loss and high photon generation efficiency.

4.1.2 Photomultiplier Tubes (PMTs) Selection Criteria

Following the light generation within the active medium, detecting and converting

it into an electrical signal is crucial for further analysis. PMTs surpass other kinds of

detectors in detecting photons emitted from phenomena such as Cherenkov radiation

and processes like ionization and bremsstrahlung. These processes involve energy

loss that often results in photon emission. PMTs are designed to convert these pho-

tons into electrical signals efficiently, enabling detailed analysis of underlying particle

interactions.

When photons generated in the medium enter the PMT through a window, which

is transparent to specific wavelengths, they strike the photocathode. This interaction

results in the emission of photoelectrons due to the photoelectric effect, as shown in

the schematic of Figure 4.2. These photoelectrons are then accelerated by an ap-

plied electric field, through a focusing electrode that guides them toward the electron

multiplier section. This section consists of a series of dynodes, which are coated

electrodes designed to amplify the signal by emitting multiple secondary electrons

for each incoming electron. These secondary electrons are then accelerated to the

next dynode, continuing the multiplication process until an avalanche of secondary
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electrons is emitted from the last dynode. Finally, the electrons are collected by the

anode at the end of the multiplier section, producing a current proportional to the

intensity of the initial light signal.

The structural integrity of the PMT, along with its electrical connectivity to the

outside circuitry, is maintained through the stem, which is a non-conductive glass

or ceramic material that holds the internal elements in place. The stem pins, which

are conductive elements extending from the stem, provide the necessary electrical

connections from the internal components of the PMT, such as the dynodes and

anode, to the external electronic circuitry. This connection ensures that the amplified

electrical signal generated by the incident photons can be accurately transmitted

and subsequently digitized and processed using specialized software. To optimize

Figure 4.2: Construction of Photomultiplier Tubes [86].

the performance of the particle detectors, it is crucial to select PMTs that satisfy

several key characteristics and minimum requirements. These include the spectral

range, quantum efficiency, cathode current, anode current, linearity, PMT bases,

dark current, time response, and lifetime. Each characteristic directly impacts the

PMT’s ability to detect and amplify the light signals into electrical signals accurately.

The remainder of this subsection details the necessary PMT characteristics and

the rationale behind the selection of ET Enterprise 9125QB [58], with an overall size

of 29 mm (1.13 inches) and an active diameter of 25 mm, as a suitable PMT for the

pion detector of the MOLLER experiment. The PMT characteristics and minimum

requirements are as follows:

Spectral Range: The spectral range defines the wavelengths that the PMT win-
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dow can effectively transmit. For the pion detector, the optimal range is between 200

and 800 nm, which aligns with Lucite’s transmission region, as shown in Figure 4.1.

This ensures efficient transmission of light signals generated during experiments. The

ET Enterprise 9125QB models, equipped with fused silica windows, further extend

the spectral range to 160–630 nm, as illustrated in Figure 4.3. This extended range

provides the necessary sensitivity and performance required for the experiment while

maintaining compatibility with the detector’s optical properties.

Figure 4.3: Quantum efficiency versus wavelength for different PMT window materi-
als. ”B” corresponds to borosilicate glass, ”W” to UV glass, and ”Q” to fused silica.
The ET Enterprise 9125QB PMTs utilize fused silica windows, covering range of 160-
630 nm, making them suitable for the pion detector in the MOLLER experiment.
[58].

Quantum Efficiency: Quantum efficiency refers to the effectiveness of PMTs in

converting incident photons into photoelectrons and is highly dependent on the wave-

length, as shown in Figure 4.3. The ET Enterprise 9125QB model, equipped with

fused silica window, achieves a maximum quantum efficiency of approximately 28%,

which aligns well with the peak wavelength emission from the Lucite active volume. A

quantum efficiency peaking at around 30% is ideal for enhancing photoelectron detec-

tion and facilitating high-precision measurements in high-energy physics applications,

making this model well-suited for our requirements.

Cathode Current: The cathode current in PMTs is due to the rate of elec-

trons emitted by the photocathode as a result of the photoelectric effect induced by

photons hitting the PMT. This current is calculated by multiplying the number of
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photoelectrons per event, the event rate, and the electron charge. In our application,

derived from simulations, the event rate was determined using a beam current of

70µA and a rate of 0.565× 10−4GHz/µA, resulting in an approximate event rate of

4MHz. So, approximately 140 photoelectrons are generated per event. From these

calculations, an expected cathode current of approximately 90 pA is obtained. The

ET Enterprise 9125QB models, allowing a maximum cathode current of 50 nA, are

found to be suitably equipped for the specific requirements of our application.

Anode Current: The anode current in PMTs is the current that flows at the

anode due to the collection of photoelectrons. The average anode current can be calcu-

lated from the current-to-voltage (I-to-V) preamplifier gain and the PMT’s operating

conditions. Assuming that the Analog-to-Digital Converter (ADC) is equipped with

a preamplifier gain of 1MΩ and a dynamic range of 2Vpp, an anode current of 2µA is

required for optimal operation. Therefore, the ET Enterprise 9125QB, with an anode

current capacity of 100µA, is an appropriate choice for our application, ensuring the

accurate transformation of photon signals into electrical signals for digital analysis.

Linearity: Linearity is important for ensuring the PMT’s output signal is directly

proportional to the incident light intensity, preventing signal distortion and provid-

ing accurate light intensity representation. This linearity is key to ensuring that the

output current accurately reflects the amount of incident light, a fundamental re-

quirement in precise measurement scenarios. The ET Enterprise 9125QB is known

for its comparably good linearity, making it a suitable choice for such applications.

However, further testing is required, and at the time of this thesis project, no spe-

cific plan had been established for this. PMT Bases: A B14B hardpin base with

a C637A voltage divider [58] is the default one. The voltage divider configuration

has a high-voltage input (T1), requiring an SHV jack bulkhead mount connector [87]

for connecting to the high voltage. Conversely, the signal output (T4) necessitates a

BNC female bulkhead mount connector [88] for connecting to a digitizer. However,

the final prototyping phase of the pion detector of the MOLLER experiment employs

PMT bases with switchable options between counting and integrating data-taking

modes, as well as 12 dynode stages identical to those in the main detectors (Section

7.4 of [74]). This approach ensures compatibility and seamless integration with the
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pion detector. However, as of the time of this thesis, a specialized switchable base

design for the pion detector has yet to be developed. Transitioning from the 3-inch

switchable base in the main detector to a 1-inch switchable base for the pion detector

requires a new design. This design task, falling outside the scope of this project. The

characteristics of the ET Enterprise 9125QB series are summarized in Table 4.1.

Table 4.1: Summary of ET Enterprise 9125QB Characteristics

Characteristic Unit Minimum Typical/Maximum
Active Diameter mm - 25
Quantum Efficiency at Peak % - 28
Spectral Range (Fused Silica) nm 160 630
Dark Current at 20°C nA 0.2 5
Cathode Current (Max) nA - 50
Anode Current (Max) µA - 100
Linearity (Pulsed, -5% Deviation) mA 25 100

4.2 Pion Detector System: Optimization Process

In the design and optimization process of the pion detector system, the Geant4

simulation toolkit and the ROOT analysis package were utilized for simulating the

passage of particles through matter and for further analysis, as explained in Section

2.7. This section provides a comprehensive description of the process that led to the

modification and finalization of the initial geometry and design of the pion detector

system. The evolution of the system concludes with the finalized design presented in

Figure 3.14. In this design, the pion detector system and the lead donut system are

integrated to form a unified system called the pion donut system. This integration

primarily arises from the need for the lead donut to shield the pion detector system

against the flux of secondary particles. As a result, all optimization processes aimed

to prevent these secondary particles from impacting the pion detector system. The

optimization was carried out in three main steps:

1. Relocating and modifying the geometry of the pion detector system.
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2. Rotating the entire pion detector system by 90
◦
.

3. Integrating the pion detector system with the lead donut system.

To better understand the impact of integrating the pion detector system with the

lead donut system (Figure3.14) and other initial optimization steps, refer to Figure

4.4. The left plot illustrates the original location, geometry, and design of the pion

detector in relation to the lead donut and showermax systems. The right plot, on

the other hand, shows the initial geometry of each module within the pion detector

system. The initial pion detector system consisted of 14 Lucite detectors. Each Lucite

Figure 4.4: Left: Initial location of the pion detector system, aligned with the lead
donut and showermax systems. Right: Initial geometry of each module within the
pion detector system.

detector was trapezoidal in shape and was optically read out by a PMT via an air-core

light guide. The light guide consisted of an air-core channel with walls made from

high-reflectivity material. Each module’s side and front views are shown on the right

of Figure 4.4. Each module includes three 1-inch Lucite pieces connected to a 3-inch

PMT (side view). The trapezoidal Lucite features a top side measuring 460 mm and

a bottom side of 420 mm in the azimuthal direction (front view). It has a thickness

of 3 inches along the z-axis and a radial length of 250 mm. At the top of each Lucite

piece, there are wedges designed to break total internal reflection and couple the light

from the Lucite to the air core light guide.
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In contrast, the finalized pion detector system (Figure 3.14) consists of 28 Lucite

detectors. Each detector has a rectangular shape. It measures 210 mm in the az-

imuthal direction for its length, 25.4 mm (1 inch) radially for its width, and 70 mm

in depth along the z-axis, consistent with a 90
◦
rotation. It is coupled directly to

a 1-inch PMT using a glue layer without a light guide. Additionally, the wedges at

the top of each Lucite have been removed. Simulations indicated that direct coupling

of the PMT to the Lucite positively impacts the functionality of the pion detector

system more than using wedges for total internal reflection.

Figure 4.5 illustrates the evolution of each module from its initial design to its final

form. The leftmost plot illustrates the primary module from 2020. Moving to the

Figure 4.5: Left: Initial design of the pion detector module in 2020. Middle: Modified
geometry of the pion detector module from 2021. Right: Finalized design of the pion
detector module from 2022.

central plot, the 2021 modified version shows a reduction in the radial dimension of

the Lucite from 250 mm to 125 mm and a decrease in the thickness of both the Lucite

and the PMT from 3 inches to 1 inch. Furthermore, inner radial and downstream

lead shielding were added to enhance the protection of the Lucite detector from

low-energy secondary particle showers, while the light guide, reflector, and wedges
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remained unchanged. The rightmost plot illustrates the most important step in the

optimization process: rotating the pion detector system by 90
◦
. Better coupling of

particles to the PMT requires positioning the PMT in the direction of the primary

particles rather than perpendicular to it. In the subsequent development of the pion

detector system, several modifications were made following its rotation. The light

guide, reflector, and wedges were removed, and shielding layers were added to both

the inner and outer radial edges of the system. Further enhancements to the rotated

version of the pion detector system led to significant improvements. These included

increasing the thickness of both the inner and outer radial shielding from 1 inch to 2

inches, reducing the azimuthal thickness of the Lucite from 125 mm to 70 mm, and

changing the Lucite shape from trapezoidal to rectangular. At this stage, the pion

detector and lead donut systems remained separate entities. To provide context for

the design changes to the pion detector system, the initial and finalized geometries

of the individual modules and the entire system have been discussed. However, the

reasoning behind these modifications still needs to be addressed.

Figure 4.6 illustrates the origin locations (r, z) of secondary particles from the

Møller generator that interact with the pion detector to clarify these changes. All

three 2-D plots illustrate the positions of the pion detector system, showermax, lead

donut, and beam pipe. Numerous tracks hitting the Lucite detector originate from

sources such as the beam pipe, the inner edge of the lead donut, the upstream side

of the lead donut, or the showermax, all indicative of secondary particle effects.

The top plot represents the initial 2020 design, established when research on the

pion detector system began. Within this design, the ratio of photoelectrons gener-

ated from pions to those generated from Møller electrons (π/e ratio) was 0.1%. The

location of hits in the top plot prompted us to infer that these are not exclusively

secondaries from the showermax, but also secondaries induced by those initial sec-

ondary particles within the showermax. While these secondary particles might not

hit the Lucite in this particular sector, they are likely to impact the Lucite in other

sectors. As a result, the design was subjected to modifications to better shield the

Lucite detector from secondary particles, ensuring that the light at the PMT predom-

inantly originates from primary particles. The middle plot shows the 2021 modified
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Figure 4.6: Top: Initial design of the pion detector system in 2020, aligned with the
lead donut and showermax systems, featuring a π/e ratio of 0.1%. Middle: Modified
geometry of the pion detector system from 2021, coordinated with the lead donut and
showermax systems, boasting a π/e ratio of 5.5%. Bottom: Finalized design of the
pion detector system from 2022, integrated into the lead donut, achieving a π/e ratio
of > 60%. Note that all plots are generated using the Møller generator.
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design, which resulted in an increase of the π/e ratio from 0.1% to 5.5%. The Lu-

cite detector has been optimally positioned close to the lead donut, with reductions

in both thickness and length. This updated geometry efficiently prevents the pene-

tration of showermax secondaries into the Lucite in adjacent sectors. Subsequently,

the bottom plot illustrates the optimized 2022 design, which not only achieves a π/e

ratio in excess of 60% but also meets the critical design objective of attaining roughly

equal numbers of pions and Møller electrons, as detailed in Section 3.4.3.2. At this

stage, the pion detector system was integrated with the lead donut structure to realize

this improvement. Table 4.2 shows the impact of optimization steps in terms of the

percentage of the π/e ratios.

Table 4.2: Optimization Steps.

Optimization Steps π/e (Photoelectrons)

Initial Geometry (2020) 0.10%± 0.01%
Updated Geometry without Shielding (2021) 2.5%± 0.1%
Updated Geometry with Shielding (2021) 5.5%± 0.3%
Pion Detector System Rotation and Lucite’s 16.8%± 0.6%
Direct Coupling to PMT (2022)
Addition of Shielding to Rotated System (2022) 49.1%± 1.4%
Adjustment of Radial Position for Lucite (2022) 51.8%± 1.5%
Modification of Lucite Shape (2022) 55.8%± 1.6%
Integration of System into Lead Donut (2022) 61.5%± 1.7%

So far, the approach to obtaining the π/e ratio has involved using Møller and pion

generators in Geant4 simulations (Section 2.8). This approach is expanded for further

investigation by incorporating the impacts of both the elastic and inelastic generators.

It is achieved by adding the rate of photoelectrons generated from these generators to

the existing data obtained from the Møller generator. Therefore, the parameter under

evaluation transformed from being the ratio of the pion-generated photoelectron rate

over the Møller-generated photoelectron rate (π/e) to a ratio where the denominator

also includes contributions from the elastic and inelastic generators (π/(e+ elastic+

inelastic)). It was observed through simulations that the photoelectron rate from

the inelastic generator had a negligible impact. However, the photoelectron rate

from the elastic generator significantly influenced the outcome, accounting for about
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half of the photoelectron rate derived from the Møller generator. Consequently, the

ratio decreased substantially from approximately 60% (π/e) to around 40% (π/(e +

elastic+ inelastic)).

Examining the underlying physics of the MOLLER experiment led us to conclude

that the secondary particles observed in the inner radial region of the Lead donut

and Lucite originated from elastic proton scattering signals. Due to the higher mass

of protons, the electrons exhibited more forward scattering, which resulted in smaller

scattering angles. This suggested that electrons would traverse a narrower radius,

moving closer to the inner side of the donut, thereby increasing the likelihood of

impacting the inner radial side of the donut. To address this, the design was revised

to extend the radial thickness of the Lead donut from 16 cm to 21 cm and to enhance

the inner radial shielding thickness from 2 inches to 4 inches. Simulations run with

the modified geometry yielded a π/e ratio of 102.65%± 2.5% and a π/(e+ elastic+

inelastic) ratio of 63.8%±1.8%. The finalized design incorporated these adjustments,

featuring a Lead donut with a radial extension of 21 cm, shielding thicknesses of 2

inches for the outer radial, and an increased shielding thickness of 4 inches for the

inner radial portions.

In collaboration with engineers at JLab, the finalized design was subjected to

further technical and mechanical evaluations. Ultimately, we agreed on a design

featuring approximately 0.935-inch thickness for the outer radial shielding, down from

the initial 2 inches, and 4.21-inch thickness for the inner radial shielding, slightly

exceeding the initially proposed 4 inches. While the updated geometry diverged from

the original plan, new simulations of the modified geometry validated its efficacy. The

revised design met the project’s objectives, achieving a π/(e+elastic+inelastic) ratio

greater than 60%. The key point is that our design remained robust; the alterations

made during the engineering phase remained consistent with the project’s objectives.

Detailed information on the geometry and dimensions of the Lead donut and the

pion detector system can be found in Table 4.3. Furthermore, Figure 4.7 provides ad-

ditional insights into the pion donut system, a term designated for the pion detector

system integrated with the lead donut system.

In both Table 4.3 and Figure 4.7, dimensions are presented in both millimetres and
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Table 4.3: Lead Donut and Pion Detector Dimensions.

Parameter Value (mm) Value (inch)

Lead Donut Inner Diameter 1941.83 76.45
Lead Donut Outer Diameter 2438.15 95.99
Lead Donut Length 200.00 7.87
Lead Donut Thickness 210.06 8.27
Lead Donut Aluminum Thickness 19.05 0.75
Pion Detector Radial Position 1132.45 44.59
Pion Detector Inner Shielding Length 180.00 7.09
Pion Detector Outer Shielding Length 180.00 7.09
Pion Detector Inner Shielding Thickness 106.93 4.21
Pion Detector Outer Shielding Thickness 23.75 0.94
Pion Detector Slot 41.28 1.63
Pion Detector Length 210.00 8.27
Pion Detector Thickness 25.40 1.00
Pion Detector Depth 70.00 2.76

inches to accommodate the conventions of different disciplines involved in the design

and implementation of the detector system. In engineering practices, certain compo-

nents such as PMTs are commonly manufactured to inch-based specifications, and

materials like Lucite are often referred to by their inch measurements. Conversely,

the scientific community, particularly in the field of physics, frequently employs the

metric system for precision and standardization. Providing both units allows for

clarity and ease of reference for all collaborators, from manufacturers to researchers,

ensuring that the specifications are universally understood and applicable.

Figure 4.7 illustrates the pion donut system from different angles to provide a

complete understanding of its design. A front view is presented in the top left with

labelled technical details. This is complemented by a side view in the top right,

highlighting various other parameters. The bottom left gives an overview and a

sectional view to visualize the structure. The bottom right contains a legend that

pairs parameters with specific part numbers. Colour coding helps distinguish different

parts: orange for aluminum components, blue for lead components, and purple for

pion detector modules.

Following the finalization of the lead donut and pion detector module geometries,
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Figure 4.7: Top left: Detailed drawing showing the front view of the pion donut
system, labelled with specific technical details. Top right: Detailed drawing showing
the side view of the pion donut system, labelled with specific technical details. Bottom
left: Design overview and sectional view of the pion donut system. Bottom right: A
legend detailing and correlating the parameters with part numbers for reference. Note:
Aluminum components are coloured orange, lead components are blue, and the pion
detector modules are depicted in purple.

the subsequent step involves physically installing 28 pion detector modules within

the lead donut structure. The mechanical design must be robust enough to securely

support the 28 modules in various orientations spanning a full 360
◦
range. Further-
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more, it is necessary to create an enclosure box that is both secure and light-tight.

The following section will detail the specifications of this enclosure and describe the

methodology for installing the modules inside the lead donut.

4.3 Pion Detector System: Mechanical Design

This section discusses the design of the light-tight enclosure box, which comprises

four main components: a Lucite box, a Lucite and PMT connector, a PMT housing,

and an adapter and end cap. Figure 4.8 illustrates these components from various

angles. The Lucite box on the top left incorporates three critical features. Firstly,

it employs fillets on the outer edges to facilitate a smoother surface, aiding in its

insertion into the lead donut. Secondly, a small wedge is internally positioned to

secure the Lucite and create a separation between the box and the Lucite, thereby

establishing an intermediate air layer, as assumed in the simulation. Lastly, some

holes are included on the exterior to assist in placing the modules within the lead

donut. At the top right of the illustration, the connector segment serves as a bridge

between the Lucite box and the PMT housing. This segment plays an essential role

in maintaining the PMT in position and fastening it to the Lucite. The PMT housing

is displayed on the bottom left, integrated into the entire enclosure box, and designed

to hold the PMT securely, preventing potential wobbling and detachment from the

Lucite. The bottom right presents the adapter, facilitating the connection between

the PMT housing and the end cap. This end cap is designed to securely hold the

PMT’s voltage divider and provide the holes for the signal and high voltage outputs

to the SHV and BNC connectors.

Figure 4.9 illustrates a comprehensive view of the fully assembled light-tight en-

closure box, detailing how all components fit together. The illustration on the left

highlights the threads designed for securely fastening the adapter to the end cap. It

is important to note that glue is utilized to attach the Lucite to the PMT, and the

Lucite is further wrapped in a Tyvek wrap to enhance the system’s efficiency. Utiliz-

ing Tyvek wrapping around a Lucite significantly enhances light collection efficiency

in Cherenkov radiation detection systems [89]. This wrapping reflects Cherenkov
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Figure 4.8: Top left: Detailed view of the Lucite box designed to accommodate the
Lucite. Top right: Detailed view of the connector segment facilitating the attachment
of the Lucite to the PMT housing. Bottom left: Detailed view of the PMT housing
securely holds the PMT. Bottom right: Detailed view of the adapter and end cap to
secure the PMT’s voltage divider.

photons toward the PMT, thereby increasing the number of photoelectrons detected.

Additionally, Cherenkov radiation is typically emitted at sharp angles relative to the

direction of the particle. Without wrapping, a significant portion of the generated

light could undergo total internal reflection, essentially getting lost and failing to

reach the PMT. By reflecting this light into the lucite, Tyvek wrapping notably in-

creases the system’s efficiency, providing another opportunity for the light to reach

the PMT and be detected, thus minimizing losses due to surface reflection.

In the subsequent phase of designing the light-tight enclosure box, the next step
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Figure 4.9: Overview of the assembled light-tight enclosure box showcasing all com-
ponents together.

is to install the enclosure box within the pion detector slot in the lead donut, part

#11 in Figure 4.7. Three L-brackets are utilized to secure the box to the slot: two

on the sides and one at the bottom. The arrangement of these brackets is shown in

the illustration at the top of Figure 4.10. The side brackets are designed to slide the

module into the pion detector slot, whereas the bottom bracket is utilized to attach

the module to the lead donut securely. As seen in the bottom part of Figure 4.10,

the angle brackets do not interfere with either the size of the pion detector slot or

the gap between the top of the enclosure box and the bottom of the lead donut arc.

According to the dimensions listed in Table 4.3 and illustrated in Figure 4.7, the pion

detector slot has a width of 1.635 inches, while the thickness of the pion detector

enclosure box is 1.3 inches. This creates an additional gap of 0.335 inches in the slot,

marked with a red star at the bottom of Figure 4.10. This gap needs to be filled. For

this purpose, it is essential to take into account the tolerances incorporated in the

pion donut system.

These tolerances fall into two categories: one arising from thermal deformation
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Figure 4.10: Top: Utilization of three L-brackets to facilitate installation. Bottom:
The pion detector module is situated within the lead arcs, illustrating the dimensions
of the pion detector cavity and the enclosure box’s thickness. A red star indicates
the gap between the enclosure box and the lead arc.

during the casting of lead inside the aluminum shell and the other originating from

the manufacturing process of the aluminum shells themselves. However, in the end,

the tolerance due to the thermal deformation is thoughtfully incorporated into the

manufacturing tolerance to ensure optimal performance.

Regarding the thermal deformation, engineers have analyzed the thermal effects

of pouring the lead. In the worst-case scenario, where all the lead is poured in at once,

it is predicted that there will be negligible changes to the dimensions of the cavity

for the pion detectors, less than a 0.080-inch change in the space between the inner

and outer walls of the cavity. Moreover, the Statement of Work can specify that the

vendor pours the lead more slowly to prevent significant rises in local temperatures,

further reducing the potential for deformation.

The manufacturing tolerances are of two types: a diameter tolerance of 0.06 inches

and a cylindricity tolerance of 0.05 inches. Cylindricity refers to a condition where

a cylindrical object has two defining cylinders, inner and outer, that span its entire

length. All points on the surface of this object must be contained within these two
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cylinders [90]. This condition is maintained and managed over the entire length of the

feature. To measure cylindricity, the object is secured firmly along its axis and then

rotated. As it spins, a height gauge takes note of any surface variations at multiple

points along its length. To meet the cylindricity tolerance, the cumulative variations

recorded by the height gauge must be less than the specified tolerance value. This

process ensures the object’s symmetry and uniformity over its entire length. The

impact of cylindricity on the lead donut arcs is illustrated in Figure 4.11. It can

give rise to a worst-case scenario where one cylinder is expanding while the other is

contracting. When taking into account the uncertainties associated with both the

diameter and the cylindricity, the total potential variation equates to ((2×0.05/2) +

(2×0.06/2)) = 0.11 inches. Consequently, in these extreme scenarios, the additional

space would range between 1.625(gap) − 0.11(tolerance) − 1.3(box) = 0.215 in and

1.625(gap) + 0.11(tolerance)− 1.3(box) = 0.435 in.

To ensure a flexible fitting method, two wedges are utilized. The first is secured

at the center of the box, as illustrated in the middle portion of Figure 4.12. The

second operates as an adjustable fitting tool, able to slide to fill any existing gap, as

demonstrated at the top and bottom of Figure 4.12. This strategy aids in achieving

a robust and tight installation. Note that the purple section in the figure represents

the side view of the enclosure box, as detailed in Figure 4.8.

The concluding element of this section is Figure 4.13, which presents the final-

ized version of the pion detector module as implemented inside the pion detector

slot of the lead donut. With the optimization of the pion detector system and the

mechanical design complete, our attention now turns to the crucial stage of valida-

tion. It is imperative to verify that the simulated predictions align with experimental

outcomes, particularly concerning the system’s rotational and the quantification of

photoelectrons generated across various designs.

The following sections explore two distinct experimental approaches to validate

the simulation results. Section 4.4 discusses cosmic testing, which studies the system’s

response to cosmic rays and serves as a preliminary assessment of its functionality.

Subsequently, Section 4.5 discusses beam testing conducted at the Mainz Microtron

(MAMI), providing a more focused and controlled environment to verify the sim-
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Figure 4.11: Top: Illustration of the effects of cylindricity on two concentric cylinders.
Bottom: Visualization of the worst-case scenarios entailing cylindrical expansion and
contraction within the Lead donut arcs, represented by the red and blue circles. The
gray circles indicate the potential outcomes in these extreme scenarios [91].

ulation results. Together, these experiments ensure that the pion detector system

operates as intended and that our simulations are a reliable predictor of real-world

performance.

4.4 Verifying the Simulation Results: Cosmic Test-

ing

This section presents the results of cosmic testing conducted to validate the the-

oretical models and simulation outcomes (Section 4.2) within the pion detector of

the MOLLER experiment. A historical background and an overview of the funda-

mental principles underlying cosmic rays were provided in Section 2.7.1. Building
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Figure 4.12: A demonstration of the flexible fitting method using two wedges. The
central section illustrates the first wedge secured at the center of the box. In con-
trast, the top and bottom sections showcase the adjustable wedge sliding to fill gaps,
effectively ensuring a robust and tight installation. Note that the purple part in the
figure is the side view of the enclosure box, details of which are presented in Figure
4.8.

Figure 4.13: The finalized version of the implemented pion detector marks the con-
clusion of this section.

on this foundation, Section 4.4.1 focuses on the simulation of cosmic testing, empha-

sizing how these simulations replicate experimental conditions and their importance

in interpreting the results. Finally, Section 4.4.2 describes the specific cosmic test-

ing setup employed at the University of Manitoba, detailing the methodologies and
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configurations used.

Therefore, the subsequent subsection will present two configurations utilized for

cosmic ray testing at the University of Manitoba and a comprehensive description

of the data acquisition system. The first configuration aligns with the initial design

of the pion detector system (depicted in the top plot of Figure 4.6), wherein the

orientation of the PMT attached to Lucite is perpendicular to the incoming cosmic

ray’s direction, prior to the system’s rotation. The second configuration corresponds

to the finalized design of the pion detector system (shown in the bottom plot of

Figure 4.6), which was adopted after rotating the system. Ultimately, the outcomes

of these two physical setups will be compared to the simulation results to determine

simulation agreement.

4.4.1 Simulating the Cosmic Testing

During the initial phase of our cosmic ray testing, we intended to utilize the

optimized Lucite dimensions referenced in Section 4.1.1 and the PMT model detailed

in Section 4.1.2. However, due to the availability of materials in our laboratory,

we modified the prototype to incorporate the components at hand, namely acrylic

plastic (PMMA) and plastic scintillator (EJ-200) [85]. Instead of the optimal Lucite

(PMMA) dimensions of 210 mm × 25.4 mm × 70 mm, we used a Lucite block with the

dimensions of 300 mm × 37 mm × 100 mm. Moreover, rather than employing ET

Enterprise 9125QB [58] PMTs, we utilized high-voltage Hamamatsu PMTs, model

H3178-51 [92]. It should be mentioned that the decision on the PMT model had not

been finalized at that time. In validating the cosmic testing outcomes, it is crucial

to replicate the experimental parameters in the simulations accurately. This includes

Lucite’s transmission and refractive index, as well as the QE of the PMTs. Jefferson

Lab has characterized the spectral transmission of Lucite from Eljen from 250 nm

to 700 nm, which is crucial for our simulation parameters. Figure 4.14 presents a

comparative analysis between UV acrylic and Lucite samples of various thicknesses.

We utilized the transmission data for a 37 mm thick Lucite sample to simulate the

PMT’s perpendicular orientation to cosmic rays, configuration (1), and 100 mm data
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for the parallel alignment, configuration (2). Additionally, the Lucite refractive index

was included in the simulation [93], shown in the right plot of Figure 4.14. The

Figure 4.14: Comparative Analysis of Material Properties: The left plot displays the
transmission percentages across wavelengths for UV acrylic and Lucite samples of
varying thicknesses. The right plot details the refractive index values of Lucite over
a broad wavelength spectrum [93].

PMT’s QE was simulated using specifications from the Hamamatsu manual. The

Hamamatsu PMTs, model H3178-51 [92], incorporate a bialkali photocathode and

Borosilicate glass window. These components are highlighted in Figure 4.15.

Subsequent to the implemented modifications, standalone simulations with a 4

GeV muon beam (as explained in Section 2.7.1) were conducted to evaluate the

performance of isolated pion detector configurations, analogous to cosmic ray testing

apparatuses. It is important to understand the difference between the two types of

simulations: the full MOLLER simulation and the standalone simulation. The first

type encompasses all components of the MOLLER experiment, while the second type

focuses solely on the pion detector system. The agreement of the results from cosmic

testing with both types of simulations indicates the design’s robustness.

For both configurations, the number of generated photoelectrons (#PEs) has been

plotted for a comparative study. The outcomes of these standalone simulations are

depicted in Figure 4.16. The ratio of #PEs in two simulation configurations is calcu-

lated as 54.85±0.14
15.02±0.03

= 3.65 ± 0.01, which should be compared to the ratio of #PEs in

two experimental configurations. The cosmic testing setup and results are detailed in
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Figure 4.15: Efficiency curves for various scintillator materials and photocathode
types across the wavelength spectrum. This plot illustrates the relative emission
efficiency of scintillators and the QE of photocathodes, spanning wavelengths from
150 nm to 850 nm. Specifically highlighted are the efficiency curves for Bialkali
photocathodes and Borosilicate glass, commonly utilized in Hamamatsu PMTs, as
indicated by the red boxes for ease of reference [92].

Figure 4.16: Comparison of the generated photoelectron distributions for two distinct
pion detector configurations under a 4 GeV muon beam. Configuration (1) exhibits
a narrower distribution of #PEs with a mean of approximately 15.02 and a standard
deviation of 4.39, whereas Configuration (2) shows a broader spread with a mean
of 54.85 and a standard deviation of 9.95. These distributions are indicative of the
#PEs in detector setups.
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the next subsection.

4.4.2 Cosmic Testing Setup

As mentioned before, acrylic plastic (PMMA), plastic scintillator (EJ-200) [85],

high-voltage Hamamatsu PMTs, model H3178-51 [92] were utilized in the cosmic

testing. Two plastic scintillators (EJ-200), which were matched in size to the Lucite,

and Lucite are mechanically coupled to the high-voltage PMTs using optical grease

for optimal optical transmission, with the flexibility of reconfiguring the setup if

necessary. However, an adhesive will be used for the MOLLER experiment, as detailed

in Section 4.2.

As depicted in the left-hand side of setups in Figures 4.17 and 4.18, the Lucite is

placed between the scintillators. In Figure 4.17, the orientation of the PMT attached

to the Lucite is perpendicular to the direction of incoming cosmic rays, which we will

refer to as configuration (1). Conversely, in Figure 4.18, the PMT attached to the Lu-

cite is aligned with the direction of incoming cosmic rays, referred to as configuration

(2). The detection process begins with the scintillators’ signals being fed into a dis-

criminator to establish a threshold (approximately 1 V). An AND gate then ensures

that only coincident signals from both scintillators are considered. The coincident sig-

nal from the scintillators and the signal from the Lucite are subsequently processed by

the CAEN VX1725S digitizer [94]. The digitizer captures the electrical charge pulses

produced by the detector, extracts the quantities of interest, and digitizes them. The

digitized data are then transmitted to the data acquisition system through the VME

to USB 2.0/Optical Link Bridge (CAEN VX3718 [95]). The CoMPASS software [96],

which is explained later, is employed to control the acquisition, perform analysis, and

manage the storage of the collected data. This method guarantees that a cosmic ray

traversing both scintillators will also pass through the Lucite, effectively isolating the

cosmic signal and improving measurement precision by eliminating background noise.

A general explanation of signal detection using the CAEN VX1725S digitizer [94]

and CoMPASS software [96] has been provided. For detailed information on these
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Figure 4.17: Schematic diagram of the cosmic testing setup at the University of Man-
itoba, with cosmic rays entering perpendicular to the PMT attached to the PMMA,
configuration(1)

Figure 4.18: Schematic diagram of the cosmic testing setup at the University of
Manitoba, with cosmic rays entering in alignment with the PMT attached to the
PMMA, configuration(2)
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components, refer to Table 4.4 and Figure 4.19, where the settings are shown and

illustrated, respectively. Table 4.4 shows the essential settings for both channel 0

(coincidence’s signal) and channel 2 (Lucite’s signal) with the description as follows:

Table 4.4: CoMPASS Factory Settings for Channels 0 and 2

CoMPASS Factory Settings Channel 0 Channel 2
Gate 300 ns 300 ns
Record length 256 ns 256 ns
Pre-gate 48 ns 48 ns
Short gate 80 ns 80 ns
Pre-trigger 128 ns 128 ns
Polarity negative negative
DC Offset 20.0% 10.0%
Threshold 100 LSB 10 LSB
Energy coarse gain 40 fC/LSB 2.5 fC/LSB
Input dynamic 2.0 Vpp 0.5 Vpp
Discriminator mode CFD CFD
CFD delay 4 ns 4 ns
CFD fraction 25% 25%
Coincident mode Ch 0 And any

Figure 4.19: Output signal from the digitizer.

Record length: Record length is the length of the acquisition window expressed

in ns. It is set to 256 ns as shown in the x-axis of Figure 4.19.
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Pre-trigger: Pre-trigger sets the portion of the waveform acquisition window to

be saved before the trigger. Its value is also expressed in ns and shown in Figure 4.19.

Polarity: Polarity selects whether the input signal to be processed is negative or

positive. By setting Negative, the algorithm will invert the input’s digital samples,

and the input will always appear positive in the waveform inspector.

DC Offset: The DC offset adjusts the baseline level of the input signal by apply-

ing a specific voltage offset to the channel. This offset is expressed as a percentage

of the full-scale range of the digitizer. Adjusting the DC offset effectively shifts the

baseline of the input signal up or down within the dynamic range. For the signal

from Lucite, which is comparatively small, a lower DC Offset is selected to optimize

the visibility of the signal within the dynamic range.

Input Dynamic Range: The input dynamic option selects the digitizer’s input

dynamic range, measured in volts peak-to-peak (Vpp), which represents the entire

amplitude range from the highest to the lowest point of the input signal that the

digitizer can handle. The available options for the CAEN VX1725S are 0.5 Vpp and

2 Vpp. A 0.5 Vpp range was chosen for the signal from the Lucite because the signal

is relatively small and can be challenging to detect. Therefore, a better resolution

is required for accurate detection. As previously mentioned, the CAEN VX1725S

digitizer [94] is a 14-bit device. The Analog Digital Converter (ADC) divides the input

voltage range into discrete levels called counts. For a 14-bit digitizer, the number of

counts is 214 = 16384, as illustrated on the y-axis of Figure 4.19. Consequently, the

Least Significant Bit (LSB), the smallest voltage increment that the ADC can resolve,

for channel 0 is 2
16384

≈ 0.12 mV, and for channel 2, it is 0.5
16384

≈ 0.03 mV. This finer

resolution enables Lucite’s signal to be more distinct and distinguishable.

Threshold: The threshold value is configurable from 0 to the maximum count of

the ADC channels, expressed in LSB. For the coincidence signal, the threshold is set

at 100 LSB, while for the Lucite signal, it is set at 10 LSB. Since the Lucite signal is

triggered on the coincidence signal, a high threshold is unnecessary; a lower threshold

is adequate to ensure signal detection.

Constant Fraction Discriminator (CFD): The CFD is essential for achieving

precise timing measurements in signal processing. Unlike a leading-edge discriminator
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that triggers at a specific threshold level, the CFD triggers at a fixed fraction of the

pulse’s peak amplitude. This method ensures that the trigger timing is consistent

regardless of the pulse size, thereby overcoming the issue of timing walk, a variation

in trigger timing caused by fluctuations in pulse amplitude. By delaying the signal

and triggering at a set fraction (25% in this setup), the CFD provides a stable timing

signal that is less affected by the pulse amplitude, leading to more accurate timing

measurements. The utility of the CFD is evident in Figure 4.19, where the blue

signal indicates the CFD’s output and the red signal marks the precise trigger point,

occurring when the rising edge of the input signal, displayed in black, reaches the

pre-determined fraction of its maximum height.

Energy Coarse Gain: The energy coarse gain is used to rescale the measured

signal charge and is expressed in terms of charge sensitivity, fC
(LSB×Vpp)

, where Vpp

represents the Input Dynamic Range. This setting allows the user to define the LSB

regarding the charge data. For example, if the measured charge Q is 100 counts and

the coarse gain is set to 40 fC
LSB

, the calculated integrated charge would be 4pC.

Gate: Gate is the time window during which the charge of the signal is integrated

to measure the total energy deposited by the incident particle. The Gate Width

determines how long this window stays open.

Short Gate: Short Gate represents a time interval shortly after the initial rise

of the pulse. It is shown in the green line in Figure 4.19.

Pre-gate: The pre-gate represents the starting position of both the gate and

short gate, as indicated by the light green line in Figure 4.19.

Coincident mode: All channels are acquired in a logical AND operation with

channel 0. The coincidence configuration includes channel 0 AND channel 1, channel

0 AND channel 2, extending to all available channels. Notably, only channels 0 and

2 had signals connected.

After configuring these detailed software settings for the digitizer, the energy dis-

tribution spectra obtained from the experimental setup, as processed by the software,

are presented in Figure 4.20. The top plot displays the energy distribution for Lucite

in configuration (1), demonstrating a specific energy range and count distribution.

Conversely, the bottom plot represents configuration (2), showing a distinct distri-
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bution pattern that spans a broader range of ADC channels. In the plots presented

Figure 4.20: Energy distribution spectra of Lucite for two different configurations.
Configuration (1) is represented in the top plot, demonstrating a specific energy
range and count distribution. Configuration (2) is shown in the bottom plot, where
a distinct distribution pattern is observed across a broader range of ADC channels.

in Figure 4.20, the regions at the beginning of the signals represent the pedestals,

which indicate the baseline electronic noise and offsets in the absence of actual signal

events. During the signal analysis, these pedestal values are subtracted to isolate

the photon-generated signals. This correction ensures accurate quantification of the

number of photons produced, as it removes any baseline fluctuations that could oth-

erwise distort the measurement. The CoMPASS software generates ROOT output
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files that serve as the basis for analysis. This analysis involves the removal of the

pedestal from the signal, focusing on the region of interest, and reconstructing the

energy distribution, as depicted in Figure 4.21. A Poisson function, appropriate for

fitting the distribution of the number of generated photoelectrons, is applied to the

data for configuration (1) and configuration (2).

Figure 4.21: Energy distribution for Lucite was captured under two experimental con-
figurations and fitted with a Poissonian function to estimate the number of generated
photoelectrons. Configuration (1), illustrated in the left plot, suggests the generation
of approximately ten photoelectrons. In contrast, Configuration (2), depicted in the
right plot, indicates the generation of roughly 34 photoelectrons.

As outlined in Section 4.1.2, the emission of photoelectrons from the cathode

within PMTs is a stochastic process governed by probabilistic principles. The emis-

sion events are random occurrences, making the Poisson distribution an appropriate

model for such binary (yes-or-no) counting experiments. The Poisson distribution is

described by the following function:

f(k;λ) = Pr(X = k) =
λke−λ

k!
, (4.1)

where k is the number of occurrences (k = 0, 1, 2, . . .), λ is the expected rate of

occurrences, e is Euler’s number (e ≈ 2.71828 . . .) [97].

In the ROOT analysis, a Poisson-like function is defined by the parameters P0,

P1, and P2, as shown in the legends of the plots in Figure 4.21. The parameter
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P0 normalizes the distribution, scaling it along the vertical axis. The parameter P1

represents the mean number of occurrences (photoelectrons generated) within the

given interval, analogous to λ in a standard Poisson distribution (Equation 4.1). The

parameter P2 adjusts the horizontal axis scale. Below is the implementation of the

function in the ROOT analysis framework, using C++ [98]:

TF1 *f1 = new TF1("f1",

"[0]*TMath::Power(([1]/[2]), x)*TMath::Exp(-([1]/[2]))/

TMath::Gamma(x/[2] + 1)", 0., 10.);

Here, [0] = P0 is the normalizing parameter, [1]/[2] = P1/P2 corresponds to the

mean λ, and [2] = P2 influences the distribution’s spread. The variable x denotes the

observed value, and the Gamma function is used to calculate the factorial of x/[2]+1.

The results of the fits for configuration (1) and configuration (2) are depicted

in Figure 4.21. In configuration (1), the fit parameters are P0 = 249 ± 5.5, P1 =

412.7± 1.4, and P2 = 38.85± 0.76. The mean value of the distribution, calculated as

mean = P1

P2
, is 10.6±0.3. In configuration (2), the fit parameters are P0 = 123.5±13.9,

P1 = 2118 ± 19.9, and P2 = 82.28 ± 8.04. The mean value for this configuration,

calculated similarly, is 34.2± 4.4.

These fits highlight several key points. First, the normalization parameter P0

serves as the normalizing factor, indicating the overall scale of the detected events.

Configuration (1) shows a higher normalization value than Configuration (2), reflect-

ing the higher frequency of detected events in the perpendicular orientation. The

parameter P1, which is analogous to the expected rate of occurrences λ in a standard

Poisson distribution, is significantly higher in Configuration (2). This suggests that

the alignment of the PMT with the direction of cosmic rays results in a greater aver-

age number of photoelectrons being generated. Meanwhile, P2 adjusts the horizontal

axis, affecting the spread of the distribution. Configuration (2) exhibits a larger P2

value, indicating a broader spread in the distribution of the photoelectron counts.

The mean value derived from the ratio P1

P2
is substantially different between the two

configurations. Configuration (2) has a mean value approximately three times higher

than Configuration (1). This indicates that aligning the PMT with the cosmic ray

direction significantly enhances the detection efficiency and increases the mean count
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of the generated photoelectron.

The ratio of #PEs in two experimental configurations is calculated as 34.2±4.4
10.6±0.3

=

3.2±0.4, which is in agreement with the ratio obtained from simulation configurations,

54.85±0.14
15.02±0.03

= 3.65±0.01. The #PEs observed in the simulations surpass those in cosmic

testing. While a reasonable match in #PEs was anticipated, the discrepancy could

be due to factors not included in the standalone simulations, such as Lucite’s surface

polish, the transparency of the optical grease, and the angular dependency of cosmic

rays. Addressing these variables is time-consuming; hence, additional experiments

were conducted at the Mainz Microtron, details of which will be provided in the

following section.

This finding also aligns with the results from the comprehensive MOLLER sim-

ulation. In the simulation, the ratio of photoelectrons originating from the pion

generator to those from the Møller electron generator increased from 5.5%± 0.3% to

16.8%±0.6%. This increase in the ratio validates the experimental results, confirming

that the experimental observations are consistent with the simulation predictions and

that the simulation’s results in other configurations can also be trusted. A compari-

son was conducted between the outcomes of cosmic ray testing and those anticipated

for the complete MOLLER experiment, which employs all optimized components.

4.5 Verifying the Simulation Results: Beam Test-

ing

To ensure the robustness and reliability of the results from the cosmic testing

phase, a series of beam tests were performed. This section details the beam testing

procedures and analyzes the data collected to verify the results from the cosmic tests

and simulations. Subsection 4.5.1 describes the beam testing setup. It explains how

the equipment and detectors were arranged and operated to closely replicate the

conditions of the cosmic tests and simulations. The results from these beam tests are

then presented, offering crucial comparative analysis with the simulation data. The

discussion includes #PEs observed, the signal distributions, and the implications
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of these observations for the accuracy of the simulations. Finally, Subsection 4.5.2

compares the results from beam tests with those from cosmic tests and simulation

predictions, underscoring the precision of the simulations and identifying potential

areas for improvement.

4.5.1 Beam Testing Setup

During beam testing, as depicted in Figure 4.22, a pion detector module, similar to

that used in cosmic testing, is aligned with the 855.1 MeV electron beam. Upstream

of the pion detector, a scintillator coupled to a PMT is positioned. The outputs from

the pion detector and the scintillator are fed into a discriminator. The discriminator

applies to filter the signals, allowing only those exceeding a pre-established threshold

to be processed, thereby reducing background noise. The filtered signals are then

directed into a CAEN N93B dual timer [99], an important component for timing

control within the experiment, which introduces a precise timing gate, ensuring that

the signal digitization by the CAEN V965 QDC [100] takes places within an accurately

defined time frame.

Figure 4.22: Schematic diagram of the beam testing setup at the Mainz Microtron
(MAMI B), depicting the electron beam entering perpendicular to the PMT attached
to the PMMA, denoted as configuration (1). The bottom left corner illustrates con-
figuration (2) at a reduced scale to avoid repetition of figure components.
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One aspect of the experimental arrangement involves integrating a clock trigger

to determine the pedestal value. This pedestal represents the baseline of the ADC

output in the absence of actual particle signals and establishes the zero point. It also

helps distinguish between the intrinsic electronic noise of the system and the actual

signals resulting from particle interactions. Operating at a frequency distinct from

the beam signal, precisely at 10 Hz, as opposed to the beam clock of 5 kHz, the clock

trigger ensures that pedestal measurements are independent of any beam-induced

signals. While the beam induces a signal every 0.2 ms, the clock trigger alternates

a pedestal measurement gate at 100 ms intervals. This scheduling guarantees that

pedestal measurements occur exclusively when no particle interactions are present.

The scintillator’s signal is clock-triggered, and the detector’s signal is time-delayed

to fall within the established timing gate, as demonstrated in Figure 4.23. Then,

an OR logic gate within a coincidence module combines the filtered signals from the

trigger scintillator and the pion detector. This gate activates in response to any signal

from the trigger scintillator or the pion detector, allowing for the differentiation of

original particle events from the baseline pedestal readings, thereby enabling precise

data acquisition and analysis.

In Figure 4.22, configuration (2) is demonstrated in the bottom left corner, wherein

the electron beam enters in alignment with the PMT attached to the Lucite. The

initial phase of our experiment involved testing configuration (2). For detailed infor-

mation on the setting, refer to Table 4.5. As seen in the table, the duration for each

dataset is set to 100 seconds, with a high voltage of 1700 V applied to the scintillator

and 1500 V to the pion detector. The ADC with the resolution of 25 fC/LSB is used.

The results of this test, along with the corresponding simulation, are presented in Fig-

ure 4.24. The plot on the left side of the figure 4.24 exhibits two distinct peaks: the

first and smaller peak represents the pedestal. In comparison, the larger subsequent

peak corresponds to the signal from the detector. The x-axis denotes the number of

ADC channels. With a 12-bit ADC, there are 212 = 4096 potential ADC channels.

The figure, however, focuses on a zoomed-in view of the signal, thereby showing fewer

ADC channels for enhanced detail.

The method employed to fit a Poisson distribution to the pulse-height spectrum is
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Figure 4.23: Screenshot of the oscilloscope screen showing the time-delayed detector
signal (yellow) relative to the beam clock (blue). The detector’s signal is carefully
timed to fall within the timing gate.

Figure 4.24: Comparative analysis of the signal obtained from beam testing (left) and
the data generated from the simulation (right) for configuration (2). The left plot
shows the distribution of ADC channels with a small pedestal peak and a pronounced
signal peak. The right plot illustrates the #PEs from the simulation with a similar
two-peak structure, pedestal peak at zero.

the same as in Section 4.4.2, but calculating #PEs is different. Under the assumption

that the observed standard deviation (σ) in the fit is governed by Poisson statistics,

where the variance (σ2) is equivalent to the mean (λ), σ is thus expressed as
√
N
N

.
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Table 4.5: Beam Testing Settings

Settings Values
Run Time 100 s
Beam Rate 5 kHz
Pedestal Rate 0.01 kHz
Scintillator PMT Voltage 1700 V
Lucite PMT Voltage 1500 V
ADC Resolution 25 fC/ADC Channel

Here, N represents the mean or average number of photoelectrons detected. The

width of the pulse-height spectrum, a measure of the standard deviation, provides

insight into the spread of the distribution of photoelectrons. If the spread is only due

to the counting statistics intrinsic to the Poisson process, then the standard deviation

of the spectrum is indicative of N , and the relationship σ2 = N is true. Given that

N can be estimated from the fractional standard deviation (s), where s is defined

as the ratio of σ to the net peak difference (peak of signal - peak of pedestal) from

the fit, then N is inferred from N = 1
s2
. This fractional standard deviation (s) is

instrumental for accurately estimating the average number of photoelectrons.

This estimation is important for obtaining the minimum #PEs, as the measured

standard deviation (σ) might be inflated by factors such as electronic noise or pulse

height variations due to the particle track’s interaction location or angle. Given the

utilization of a pencil electron beam, the pulse height variability resulting from the

position or incident angle of the track is expected to be minimal. Using the method

outlined, the minimum #PEs generated during beam testing can be calculated as(
(846.7−578.2)

27.85

)2
≈ 93. Conversely, the #PEs produced in the corresponding simula-

tion equals the mean value of the Gaussian fit, which is approximately 104. There is a

reasonable agreement between the beam testing results and the simulation outcomes.

Further comparisons involved conducting experiments in configuration (1) in Fig-

ure 4.22 and comparing #PEs with those from the corresponding simulations. The

minimum #PEs generated during the beam test is approximately 28, and in the

corresponding simulation, it is approximately 30, as summarized in Table 4.6. A rea-

sonable agreement between the beam testing results and the simulation outcomes is
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observed in this configuration as well. The plots of this configuration are not shown

to avoid repeating similar plots.

The ratio of the minimum number of generated #PEs between the two configura-

tions for the experimental data was found to be 3.32± 0.39, while for the simulations

was 3.51± 0.02. These values indicate consistency between the experimental results

and the simulations. A summary of the results from the simulations, cosmic test-

ing, and beam testing in terms of #PEs for both configurations and the ratios are

presented in the subsequent subsection.

4.5.2 Comparison of Results from Simulations, Cosmic Test-

ings, and Beam Testings

This subsection compares the #PEs obtained from cosmic testings, beam testings,

and their respective simulations. The comparison is a crucial validation step for the

simulation models by comparing simulated outcomes with empirical data. The #PEs

and their ratios across different configurations are listed in Table 4.6.

Table 4.6: Comparison of the number of photoelectrons #PEs across different con-
figurations and tests.

#PEs Cosmic Testing Simulation of Beam Testing Simulation of
Cosmic Testing Beam Testing

Config(1) 10.6± 0.3 15.02± 0.03 28.2± 0.2 29.91± 0.02
Config(2) 34.2± 4.4 54.85± 0.14 92.9± 1.6 104.20± 0.03

Ratio( (2)
(1)

) 3.2± 0.4 3.65± 0.01 3.29± 0.06 3.485± 0.003

Table 4.6 demonstrates a general consistency between the results from cosmic

testing, beam testing, and their corresponding simulations. Although there is no exact

one-to-one correspondence between the experimental outcomes and the simulations,

the #PEs ratio between two different configurations remains constant within the

experimental uncertainties. Furthermore, this ratio aligns with the ratio of #PEs

from the pion generator to those from the Møller electron generator in the complete

MOLLER experiment, calculated as 16.8±0.6
5.5±0.3

= 3.055± 0.199.
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Another comparison between the beam test and the simulations was the position

dependency of the #PEs. During the beam test, we directed the beam at five

different positions across the pion detector, as seen on the right-hand side of Figure

4.25, and compared the number of generated #PEs with respect to these positions.

The same process was implemented in the simulations to obtain the #PEs. Figure

4.25 illustrates this comparison normalized at the centre position. The results indicate

the acceptance of the detector to pions, showing that it does not receive the same

amount of light from pions at different positions on the detector. Consequently, the

detector does not equally sample all pions, giving more weight to the asymmetry in

the center.

The agreement between the beam test results and the simulations demonstrates

that the simulations correctly replicate the detector’s response. This accuracy is

essential because if the simulations did not match the beam test results, we could not

confidently use them to interpret the pion asymmetry measurements. We measure an

asymmetry for pions that are distributed across the front of the detector, combining

the weighted asymmetry. The optical model of the detector is sufficiently accurate to

achieve agreement between center and edge positions. However, in our simulations,

more weight is assigned to the events at the outer edges of the detector than the

beam test, leading to small discrepancies at the edges. This observation explains the

discrepancy between the one-to-one results from cosmic testing and beam testing as

detailed in Table 4.6. Cosmic testing primarily samples the photoelectron counts at

the detector edges, whereas beam testing does not exhibit this characteristic.

In conclusion, this chapter has comprehensively outlined the development of the

pion detector system, from its foundational principles to its practical construction.

Key aspects have been meticulously detailed, such as the selection criteria for the

active medium and PMTs, along with the mechanisms for distinguishing Cherenkov

radiation from scintillation in pion detection. The optimization process of the pion

detector system and its mechanical design were thoroughly explored. Moreover, the

chapter explored validating the simulation results through cosmic and beam testings,

including detailed analyses at the Mainz Microtron (MAMI) and comparative studies

of the results from simulations, cosmic testings, and beam testings.
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Figure 4.25: Position dependency of (#PEs): Left: The number of photoelectrons
(#PEs) generated at different positions on the pion detector for both the beam test
and the simulation. Right: Front view of the pion detector showing the five positions
where the beam was directed: -12 cm, -4 cm, 0 cm (center), 4 cm, and 12 cm.

As we progress, Chapter 5 will shift focus to the post-experimental phase, intro-

ducing Bayesian Analysis as a sophisticated method for applying corrections to the

data collected from the MOLLER experiment. This analytical approach, first em-

ployed in analyzing data from the Qweak experiment [16], offers a robust framework

for refining experimental results and enhancing the accuracy of our interpretations.

The upcoming chapter will elucidate the methodology and utility of Bayesian Analysis

in the context of high-precision experimental physics.
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Chapter 5

Bayesian Analysis Methodology

Bayesian statistics is a method of data analysis founded on Bayes’ theorem. In this

approach, prior knowledge about parameters in a model is updated based on observed

data. The combination of prior knowledge and data collected through observation

determines a posterior probability distribution. Prior knowledge is expressed as a

prior probability distribution, and the likelihood function is constructed from the

data collected through observation. As a result, the probability of future events is

predicted by the posterior. The stages involved in Bayesian analysis, from determining

the prior distribution and data models to deducing inference, are described in this

chapter. Specifically, the impact of Bayesian analysis in enhancing the precision of

measurements in the Qweak and MOLLER experiments, which are two examples of

PVES experiments, is outlined.

5.1 Introduction to Bayesian Analysis

Statistics comprises two primary methodologies: frequentist and Bayesian ap-

proaches. Understanding the distinctions between these approaches is crucial, as

it significantly influences data analysis and the interpretation of scientific results.

The core difference between frequentists and Bayesians lies in their interpretation of

probability. Frequentists define probability in terms of repeated measurements. For

instance, when a measurement is repeated multiple times, each trial might yield a
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different value due to statistical uncertainties. Over numerous trials, the frequency

of any particular value defines the probability of observing that value. Thus, proba-

bilities are associated with the frequencies of repeated events.

In contrast, Bayesian statistics fundamentally differs by directly defining probabil-

ities as measures of belief or certainty about the occurrence of an event or the truth

of a hypothesis. In Bayesian analysis, probability serves as the universal language

for describing the likelihood of hypotheses and making decisions under uncertainty.

Direct probabilistic inference enables Bayesian to provide more informed estimates

and predictions, a conceptual difference that often leads to divergent methods in sta-

tistical data analysis. For example, weather forecasting uses Bayesian methods to

predict the probability of various weather conditions based on prior data and current

observations.

The foundation of Bayesian statistics was first described in 1763 by Reverend

Thomas Bayes and later published by Richard Price [101]. In 1825, Pierre Simon

Laplace published the Bayes’ theorem [102]. In the past 50 years, the ideas of inverse

probability and Bayes’ theorem have become prominent tools in applied statistics,

although they are long-standing in mathematics. Bayesian methods of data analy-

sis are now widely used across different fields of science such as ecology [103], social

and behavioral sciences [104], genetics [105], medicine [106], educational research

[107], epidemiology [108], organizational sciences [109],[110], modeling [111], nuclear

physics [112],[113], and experimental data analysis [114].

5.2 Theory

In this section, Bayes’ theorem is derived, and its essential elements are explained.

Furthermore, the formalization of prior distributions is discussed, emphasizing the role

that priors play in shaping the posterior distribution. The process of determining the

likelihood distribution and selecting methods for sampling from the posterior distri-

bution is also examined. This discussion culminates in analyzing the applicability of

Bayesian methods within PVES experiments.
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5.2.1 Bayes’ theorem

The Bayesian approach studies conditional probability. When two events A and

B are dependent or conditional, the basic conditional probability is expressed as:

P (B|A) = P (B ∩ A)
P (A)

, (5.1)

where P (B|A) denotes the probability of event B given the occurrence of event A,

P (B ∩ A) represents the probability of intersection of events A and B, and P (A) is

the probability of event A occurring. Noting that P (A|B) ̸= P (B|A) and P (B∩A) =
P (A ∩B), It can be written similarly:

P (A|B) =
P (A ∩B)

P (B)
. (5.2)

Based on Equation 5.1, Equation 5.2 can be rewritten as:

P (A|B) =
P (B|A)P (A)

P (B)
. (5.3)

Equation 5.3 is known as Bayes’ rule. Extending these principles to the context of

data and model parameters, where A is the observation of a specific dataset y and B

is the realization of the model with parameters θ, Bayes’ rule can be expressed as:

P (θ|y) = P (y|θ)P (θ)
P (y)

. (5.4)

Here, P (θ|y) is the conditional probability of the model parameters θ given the data

y, representing the posterior distribution 1. P (y|θ) is the likelihood function, the

probability of the data given the model parameters. P (θ) is the prior distribution,

reflecting subjective beliefs or existing knowledge about the parameters. The denom-

inator P (y) serves as a normalizing constant to ensure the posterior distribution sums

1Discrete events have distinct probabilities, while continuous events are described by a probability
density function.
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to one or integrates to one over all θ2. The three fundamental steps of the typical

Bayesian workflow are:

1. Utilize the prior distribution, typically chosen before data collection, to repre-

sent existing knowledge about a parameter in a statistical model.

2. Employ the observed data to determine the likelihood function.

3. Combine the prior distribution and likelihood function to form the posterior

using Bayes’ theorem.

The posterior distribution integrates prior knowledge with the observed data, provid-

ing updated insights and facilitating inferences.

5.2.2 Formalizing Prior Distributions

Prior distributions have a determining role in Bayesian statistics. They represent

the initial beliefs or knowledge about model parameters before observing the data.

Prior distributions can take various forms, ranging in levels of informativeness from

highly informative to non-informative. Three basic categories of priors can be used

to categorize the level of (un)certainty: informative, weakly informative, and diffuse.

An informative prior conveys a high degree of certainty about the model parameters.

When strong existing knowledge or data is available to constrain the parameters, an

informative prior is a suitable choice and will have a comparatively larger impact

on the posterior. In this case, with a normally distributed prior, a small variance

is typically expected. A weakly informative prior provides some guidance without

being overly specific, maintaining an intermediate level of certainty. For a normally

distributed prior, this would mean a larger variance than an informative prior, allow-

ing the observed data to have a more substantial influence on the posterior. Finally,

a diffuse prior reflects a large uncertainty or neutrality about the model parameter,

making it suitable for situations without prior knowledge of the parameters. Here,

the posterior distribution is predominantly influenced by the observed data.

2For discrete random variables, the posterior distribution sums to one. For continuous random
variables, the posterior distribution integrates to one.
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The choice of prior distribution is a critical step in Bayesian analysis, as it encap-

sulates prior beliefs and knowledge, influencing the resulting posterior distribution.

5.2.3 Determining the Likelihood Function

The likelihood function is a fundamental concept in frequentist and Bayesian in-

ference, indicating how strongly the observed data support various potential values

of unknown parameters. Frequentists treat unknown parameters as fixed, defining

the likelihood as a conditional probability distribution of the data given these fixed

parameters. In contrast, Bayesian inference considers the observed data as fixed and

the parameters as variable, with the likelihood being a function of these parame-

ters. To explain the likelihood function and the difference between frequentist and

Bayesian, we refer to the example of optical photon counting [115]. In the frequentist

perspective, assuming a single observation Di = (fi;σfi), the probability distribution

of the measurement, given the photon flux f (the mean number of photons measured

per second) with Gaussian uncertainties, is expressed as:

P (Di|f) =
1√

2πσf 2
i

e

[
−(fi−f)2

2σf2
i

]
. (5.5)

Here, fi and σfi represent the observed flux and uncertainty in the ith measure-

ment, respectively. In the frequentist approach, the best estimate of photon flux that

maximizes likelihood is determined using maximum likelihood estimation [116]. This

involves finding the value of f that maximizes P (Di|f), typically done by setting

the derivative of the probability function to zero. A set of all measurements can be

combined to construct the likelihood L:

L(f) =
N∏
i=1

P (Di|f). (5.6)
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For computational simplicity, the log-likelihood is often used, as maximizing this also

maximizes the likelihood:

− ln[L] =
−1

2

N∑
i=1

[
ln(2π(σfi)

2) +
(fi − f)2

σf 2
i

]
. (5.7)

By setting the derivative of Equation 5.7 to zero, ∂ln [L]
∂f

|f=f̂ = 0, the estimated value

of f that maximizes the likelihood is:

f̂Frequentist =

∑N
i=1 fi/σf

2
i∑N

i=1 1/σf
2
i

. (5.8)

In the case of equal uncertainties (σfi), f̂ simplifies to the mean of the observed data:

f̂Frequentist =
1

N

N∑
i=1

fi. (5.9)

In Bayesian analysis, probabilities are both the starting point and the outcome.

The same likelihood function used in the frequentist approach is applied in Bayesian

analysis, but its role is different. It is used to update the prior distribution to a pos-

terior distribution. Referring to Equation 5.5, the posterior distribution in Bayesian

terms is:

P (f |Di) =
P (Di|f)P (f)

P (Di)
. (5.10)

P (f |Di) is the posterior distribution, P (Di|f) is the likelihood, and P (f) is the prior
distribution, which can be informative, weakly informative, or diffuse. To demon-

strate how Bayesian analysis is applied to the example of optical photon counting, a

Gaussian prior distribution is considered, characterized by a mean of f0 and a variance

of σ2
f :

P (f) =
1√

2πσf 2
0

e

[
−(f−f0)

2

2σf20

]
. (5.11)

Using Bayes’ theorem (Equation 5.10), this prior distribution is updated with the
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observed data D1 = (f1;σ
2
f1
) to obtain the posterior distribution P (f |D1):

P (f |D1) =
P (D1|f)P (f)

P (D1)
. (5.12)

The resulting posterior distribution, which remains Gaussian, features updated pa-

rameters. These include the mean f1 and the variance σ2
f1
, which can be determined

as follows:

f1 =

(
f1
σf2

1

)
+
(

f0
σf2

0

)
(

1
σf2

1

)
+
(

1
σf2

0

) , (5.13)

σf1 =

((
1

σf 2
1

)
+

(
1

σf 2
0

))−1

. (5.14)

This posterior distribution, P (f |D1), then serves as the prior distribution for the

next step in the Bayesian analysis when new data D2 = (f2;σ
2
f2
) is observed. The

new posterior distribution is obtained by updating the prior distribution with the

likelihood of the new data:

P (f |D2) =
P (D2|f)P (f |D1)

P (D2)
, (5.15)

where P (f |D2) is the new posterior distribution, P (D2|f) represents the likelihood of

the new data given the parameter f , and P (f |D1) is the prior distribution, which was

the posterior distribution from the previous step. This iterative updating process con-

tinues as new data is collected, continually refining the estimate of f . Consequently,

when Di = (fi;σ
2
fi
) is observed, P (f |D(i−1)) is updated to obtain the posterior distri-

bution P (f |Di) as follows:

P (f |Di) =
P (Di|f)P (f |Di−1)

P (Di)
. (5.16)

Equation 5.16 is comparable to Equation 5.10; the primary distinction is that here,

the prior distribution explicitly serves as the posterior distribution from the previous

step. In the final step of the Bayesian analysis, the resulting posterior distribution
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characterized by a mean f̂Bayesian and variance σ2
Bayesian as follows:

f̂Bayesian =

∑N
i=1

(
fi
σf2

i

)
+
(

f0
σf2

0

)
∑N

i=1

(
1

σf2
i

)
+
(

1
σf2

0

) , (5.17)

σf 2
Bayesian =

(
N∑
i=1

(
1

σf 2
i

)
+

(
1

σf 2
0

))−1

. (5.18)

The posterior mean f̂Bayesian represents the updated estimate of the photon flux f , in-

corporating both the observed data and the prior knowledge. The posterior variance

σf 2
Bayesian combines the uncertainties from both the prior distribution and the data,

weighted according to their respective precisions. In the case of no prior knowledge,

the variance of the prior distribution approaches infinity, σf 2
0 → ∞. Consequently,

Equation 5.17 simplifies to Equation 5.8. Therefore, in the absence of prior informa-

tion, the variance is determined solely by the data. The comparison between Equation

5.17 and Equation 5.8 illustrates how the two approaches yield distinct interpretations

and results when employing the same likelihood function.

In practice, the posterior distribution is not always as simple as a Gaussian func-

tion. For more complex problems, the posterior distribution may require sophisti-

cated model-fitting techniques and computational methods. The next subsection will

discuss model fitting in the Bayesian context.

5.2.4 Model fitting

Statistical models are designed to simplify reality, enhancing our understanding of

the key elements of the system. In the frequentist framework, model fitting primarily

focuses on estimating results using the maximum likelihood estimation method [116].

In the Bayesian framework, the emphasis is on estimating the posterior distribution

of model parameters. Direct inference on the posterior distribution in Equation 5.4

is feasible in low dimensions and with simple distributions. However, the posterior

distribution is usually very complicated and high-dimensional. This means that the

exact evaluation of the posterior distribution is practically infeasible, which necessi-
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tates the use of approximation technique. Historically, the computational challenges

associated with Bayesian inference have led to a preference for frequentist methods

until the development of more efficient computational methods.

The literature proposes various methods to address these challenges. Approxi-

mate Bayesian Computation (ABC) methods [117], Integrated Nested Laplace Ap-

proximations (INLA) [118], and Variational Bayesian methods [119] are referred to

as non-Markov Chain Monte Carlo (MCMC) methods. These methods tend to ap-

proximate only the marginal posterior distributions and do not adequately address

the approximation of joint posterior distributions. While these techniques can be fast

and computationally efficient, they are often specific to certain problems or limited to

families of known analytical distributions. Alternatively, MCMC methods, which will

be explained in more detail, attempt to approximate the joint posterior distribution.

These methods are more computationally intensive but are generally applicable to a

wider range of problems. Therefore, this thesis focuses on employing MCMC methods

within Bayesian analysis.

In 1990, Gelfand and Smith introduced the MCMC method [120], particularly

suitable for Bayesian analysis [121]. The method stands out for its computational

efficiency. It has become a widely used algorithm in Bayesian statistics, where the

Monte Carlo part denotes the sampling process, and the Markov Chain part describes

the mechanism for obtaining these samples. Monte Carlo methods are computational

algorithms designed to estimate numerical values for various problems, such as eval-

uating integrals using repeated random sampling. Consider the task of estimating an

expected value defined by the following equation:

E[f(X)] =

∫ +∞

−∞
f(x)

1√
2π
e−x2/2 dx, (5.19)

where X follows a standard normal distribution. Computing this integral analytically

may be challenging; thus, we can employ a Monte Carlo method to approximate

E[f(X)]. By generating n random samples x1, . . . , xn from the standard normal

distribution, we can estimate f(xi) for each sample and approximate E[f(X)] using
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the following estimator:

E(f(X)) ≈ µn =
1

N

N∑
n=1

f(xn). (5.20)

While obtaining samples from the standard normal distribution is straightforward,

complications arise when the required samples originate from a complex distribution,

say an unknown posterior distribution. MCMC methods address this issue by provid-

ing a means to sample from distributions. The underlying principle is constructing a

Markov Chain that converges to the stationary distribution, a concept that will be

explained subsequently.

A discrete Markov Chain is defined by a sequence of random variables,X0, X1, X2, . . .,

that can take values in the state space X . The probability distribution of the state at

step n is denoted by P (Xn), where Xn ∈ X . The fundamental properties of Markov

Chains is the Markov property, which is expressed as:

P (Xn+1 ∈ A | X0, X1, . . . , Xn) = P (Xn+1 ∈ A | Xn) ∀A ⊆ X . (5.21)

This formula implies that the probability distribution for the next state is determined

only by the current state. In other words, the conditional probability P (Xn+1 | Xn)

depends solely on Xn, not on the preceding states X0, X1, . . . , Xn−1. This property

simplifies the analysis by reducing the dependency of future states on the entire

history to just the current state. However, the key to the method’s success is not the

Markov property but rather the fact that the approximate distributions are improved

at each step in the simulation, ultimately converging to the target distribution.

The Markov chain is defined by some initial parameter values and transition prob-

abilities. The choice of transition is crucial as it determines the efficacy of the MCMC

method. Typically, a predetermined distribution is used to propose new values, which

are then accepted or rejected based on specific criteria. Upon acceptance of new val-

ues, the Markov chain transitions to a new state; if rejected, it remains unchanged.

Various choices for transitions include the Gibbs sampler [122], Metropolis-Hastings

random walk sampler [123], slice sampler [124], and No-U-Turn Sampler [125], each
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with unique properties. A warm-up or burn-in phase is often necessary in MCMC al-

gorithms to ensure the chain moves toward a productive area of the parameter space.

This involves discarding initial samples not representative of the effective parameter

values.

One of the first and most popular MCMC methods is the Metropolis algorithm

that was first introduced by Metropolis et al. [126] and then extended as the Metropolis-

Hastings (MH) algorithm by Hastings [127]. In this method, sampling is obtained

from the posterior distribution of the parameter (θ) given the prior and likelihood,

i.e., P (θ|y) = P (y|θ)P (θ)
P (y)

. We know how to write P (θ|y) but do not know how to apply

sampling to this distribution due to its complexity. The MCMC method is applied to

determine which values of θ to be accepted or rejected. The MH algorithm accepts a

value as a new sampling point with the following probability:

α(θi+1|θi) = min(1,
P (θi+1)P (y|θi+1)

P (θi)P (y|θi)
) = min(1, H), (5.22)

where H is called the Hastings ratio. According to the formula above, the probability

of transitioning from the current position θi to the new point θi+1 depends on the

posterior value at the new point to the old point, (P (θi+1|y)/P (θi|y)). First, the

jump will be accepted if the ratio is more than 1, i.e., when the posterior probability

increases. Second, the target posteriors’ ratio guarantees that the chain will eventually

move to areas with high probabilities, which is more effective than wandering around

the entire domain. Additionally, the sampling process is designed so that we expect

to draw from a distribution that becomes increasingly closer to p(θ|y) at each step.

This ensures that the approximate distributions improve progressively, converging to

the target posterior distribution.

Having established the foundational principles and operational mechanics of the

MH algorithm, we now turn our attention to the practical application of MCMC

methods, particularly through a variety of software packages designed to facilitate

these complex computations.
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5.2.5 Software Tools and Practical Considerations for MCMC

Methods

According to the different methods, a range of software packages implements

MCMC methods, often providing options for customization. This allows analysts to

focus on specifying prior distributions and models without considering technical pro-

gramming aspects. BUGS, as the original general-purpose Bayesian inference engine,

uses Gibbs and Metropolis sampling. WinBUGS233 is the Windows-based version of

the software, and OpenBUGS234 is the open-source version available on Linux and

Mac. Gibbs sampling and Hamiltonian Monte Carlo (HMC) are two features of the

open-source Bayesian modeling and inference system PyMC. Using HMC, the open-

source Bayesian inference engine Stan can be used with R, Python, Julia, MATLAB,

and Stata. In this research, Stan with Python is used. Stan [128], a powerful Bayesian

modeling language released in 2012, offers HMC with No U-Turn Sampler (NUTS)

[125], an algorithm providing efficient fits for complex models.

HMC [129] is a variant of the MH algorithm that enhances sampling efficiency

by utilizing principles from Hamiltonian dynamics. The core idea behind HMC is to

introduce auxiliary momentum variables and utilize Hamiltonian dynamics to propose

new states, thereby achieving a more efficient exploration of the target distribution.

The Hamiltonian function H(θ, p) is defined as the sum of the potential energy U(θ)

and the kinetic energy K(p):

H(θ, p) = U(θ) +K(p). (5.23)

Here, θ represents the position variables, which correspond to the parameters of inter-

est, and p denotes the momentum variables, which are auxiliary variables introduced

to aid the sampling process. The potential energy U(θ) is typically defined as the

negative log-posterior, given by U(θ) = − logP (θ|y), where P (θ|y) is the posterior

distribution of the parameters θ given the data y. The kinetic energy K(p) is gener-

ally defined as K(p) = 1
2
pTM−1p, where M is the mass matrix, which is often chosen

to be the identity matrix for simplicity. The evolution of the position and momentum
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variables is governed by Hamilton’s equations:

dθ

dt
=
∂H

∂p
=M−1p and

dp

dt
= −∂H

∂θ
= −∇U(θ). (5.24)

These equations describe how the position and momentum change over time. HMC

employs the leapfrog integration method [129] to numerically solve Hamilton’s equa-

tions and propose a new state. The MH acceptance criterion is applied to decide

whether to accept or reject the new state. In summary, by incorporating Hamilto-

nian dynamics, HMC can make larger, more informed steps in the parameter space

compared to traditional MCMC methods. This results in more efficient sampling,

particularly in high-dimensional spaces.

The efficiency gains of HMC come with certain complexities. Firstly, HMC neces-

sitates the computation of the gradient of the log-posterior. For complex models, this

computation can range from being time-consuming to outright infeasible. Secondly,

HMC requires users to determine two critical hyperparameters: the step size and the

number of steps to simulate the Hamiltonian dynamics. Inappropriate selection of

these hyperparameters can lead to inefficiencies, making the sampling process sub-

optimal. NUTS is an extension of HMC, specifically designed to adaptively tune the

step size and the number of steps during the burn-in period, and continues to adapt

throughout the MCMC run.

The core concept of NUTS is to simulate the Hamiltonian dynamics until the sys-

tem’s trajectory begins to reverse direction, heading back toward its starting point.

Mathematically, this reversal is detected when the momentum vector p aligns in the

direction pointing back to the initial position θ0. This condition can be expressed as

(θ − θ0)
Tp < 0. The aim is to execute as large a move as possible without retrac-

ing steps, as moving back toward the starting point is unproductive for exploration.

NUTS effectively constructs trajectories that prevent this reversal by performing sim-

ulations in both forward and backward directions in time. It starts with a single step,

either forward or backward, then continues to double the trajectory length: two,

four, and so on. This exponential expansion continues until it detects that either end

of the trajectory begins to curve back toward the origin. In NUTS, the algorithm

137



checks for U-turns at each step, ensuring the trajectory does not reverse. This is

mathematically represented by checking (θj − θ0)
Tpj > 0 and (θj − θj−1)

Tpj > 0,

where θj and pj represent the position and momentum at step j. In the final step,

NUTS employs a selection process from the ensemble of points accumulated during

the trajectory-doubling phase. This selection is executed in such a way that the

detailed balance is preserved. Detailed balance ensures that the probability of tran-

sitioning from one state to another is the same as the probability of transitioning

back from the second state to the first. This property guarantees that, over time,

the Markov chain will sample from the correct target distribution. By preserving

detailed balance, NUTS ensures that the samples it generates are representative of

the target distribution, meaning that they accurately reflect the underlying statistical

properties of the model being studied. The probability of selecting a point θ from

the trajectory is proportional to exp(−H(θ, p)), where H(θ, p) is the Hamiltonian

evaluated at the position θ and momentum p. As a result, NUTS offers a powerful

and efficient alternative to conventional HMC, significantly reducing the complexity

of hyperparameter tuning and improving the practical usability of MCMC methods

for complex Bayesian models.

This basic introduction to HMC and NUTS summarizes their roles in Bayesian

analysis. For more detailed mathematical explanations, readers are referred to ref-

erence [125]. This thesis focuses on applying Bayesian analysis to PVES experiment

data rather than probing into the mathematical details or modifying Bayesian algo-

rithms. Choosing the most suitable and user-friendly software packages and program-

ming languages is important. Stan utilizing Python (PyStan [128]) is the preferred

tool in Bayesian analysis, as mentioned before, serving as a front-end. Stan still uses

C++ in the backend for rapid computations. Building upon these foundational con-

cepts, the following sections will examine the implementation of Bayesian analysis in

two specific PVES experiments: Qweak [16] and MOLLER [21].

138



5.3 Enhancing Precision of Extracted Quantities

in the Qweak Experiment

In this section, a brief introduction to the Qweak [16] experiment, a PVES study

aimed at measuring the weak charge of the proton, is provided first. The Qweak

apparatus was not explained in Chapter 3 because the main scope of the thesis is the

MOLLER experiment [21]. The Qweak results [47] are included here to demonstrate

the application of Bayesian analysis. Then, the inputs, parameters, and the model for

the Bayesian analysis are discussed. Finally, the results from the Bayesian analysis

are compared with those from the previously conducted optimization process, the

Monte Carlo minimization method, to illustrate differences in how each approach

handles uncertainty and refines measurement precision.

5.3.1 Qweak Experiment

The Qweak experiment [16] was a precision measurement experiment designed to

determine the weak charge of the proton. This was done by measuring the parity-

violating asymmetry in elastic electron-proton scattering at low momentum transfer.

The same as the MOLLER experiment [21], the aim is to explore new physics beyond

the Standard Model of particle physics. Figure 5.1 shows a schematic of the Qweak

experiment, illustrating the key components and their arrangement for measuring the

weak charge of the proton.

In this experiment, a polarized electron beam with an energy of 1.165 GeV and a

current of 150 µA is directed toward a 35 cm liquid hydrogen target. The polarization

of the beam, approximately 85%, is a critical factor in the experiment as it allows

for the measurement of parity-violating asymmetry in the scattering process. As

the electrons interact with the protons in the hydrogen target, they are scattered

elastically. The primary collimator shapes the electron beam before it reaches the

target. The scattered electrons then pass through a toroidal magnet designed to

focus the scattered electrons. The eight fused silica (quartz) detectors are used to

identify the scattered electrons, completing the detection setup. Figure 5.2 shows the
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Figure 5.1: Schematic of the Qweak Experiment: A polarized electron beam targets
liquid hydrogen to measure proton weak charge, guided by a primary collimator and
toroidal magnet. Electron paths are tracked by drift chambers, identified by quartz
detectors [130].

frontal view of eight main detectors (MD) arranged around the target.

In an ancillary measurement of the Qweak experiment, the beam energy was in-

creased to 3.35 GeV to measure a small (approximately 0.1%) contamination from

pions and other charged hadrons at higher energies. A 10.2 cm thick lead wall was

placed in front of the lowermost detector (MD7), labeled as main detector 7 (MD7).

This lead wall attenuates electrons more than pions due to their differing interactions

with the dense material, effectively enhancing the pion dilution in the asymmetry

measured by MD7. Consequently, MD7 has the role of the pion detector, similar

to the dedicated pion detector in the MOLLER experiment 3.4.3.2. The unique re-

sponse of MD7 to the electron and pion mix, providing a different linear combination

of particle contributions compared to the other seven detectors, is critical for isolating

the asymmetries attributed to scattered electrons from those due to pions. The abil-
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Figure 5.2: Frontal View of Detector Array in Qweak Experiment: The eight-detector
configuration with a lead wall in front of MD7 to enhance pion detection.

ity to analyze these distinct linear combinations and measure the pion background

fraction is essential for the experiment to separate and quantify the individual con-

tributions to the overall measured asymmetry. This analysis is further complicated

by the beam’s polarization state. Ideally, data would have been collected using a

longitudinally polarized beam and employing a detector system capable of rejecting

all scattered particles except for electrons. The measured asymmetries would then re-

flect only the parity-violating asymmetry from the scattered electrons. However, the

experimental conditions were not ideal, due to a partially transverse electron beam

and a significant background from pions. To further the analysis, it was necessary to

isolate the parity-violating asymmetry from the scattered electrons by distinguishing

between longitudinal and transverse asymmetries and separating the contributions of

electrons from pions. This separation process is described in detail subsequently.

The beam polarization angle quantifies the orientation of the beam electrons’ po-

larization vectors relative to the beam axis in the horizontal plane. A polarization

angle of 0◦ ( θP = 0◦ ) is defined as parallel to the beam axis, pointing downstream.

These vectors are decomposed into a longitudinal component along the beam axis

and a transverse component perpendicular to the beam axis in the horizontal plane,

leading to associated longitudinal or transverse asymmetries. In the ancillary mea-

surement of the Qweak experiment [47], beam polarization was dictated by another
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experimental hall, resulting in the Qweak primary target receiving a beam with mixed

polarization. As depicted in Figure 5.3, the polarization angle of the beam, θP , was

−19.7◦ ± 1.9◦, with a positive angle denoting rotation from the beam axis (+z-axis)

towards the beam right (+x-axis). Consequently, a substantial undesired transverse

component (about 33%) was introduced. The dataset containing this mixed polariza-

tion is referred to as mixed data (108 hours of data-taking), as it includes the physics

asymmetry of interest, and the data was acquired under these conditions. Several

runs with purely transverse polarization were necessary to properly account for the

transverse component in the mixed dataset. These runs, with a beam polarization

angle of 92.2◦ ± 1.9◦ [131], were essential for analyzing and correcting the transverse

background. This dataset is known as transverse data (4.3 hours of data-taking).

As mentioned in Chapter 2, when we talk about the asymmetry components in

all the subsequent sections, it means that the asymmetry arises from the polarization

components.

Figure 5.3: Top-down view of the beam polarization: Illustrating the red arrow to
indicate the downstream direction of the beam axis, with the mixed data (green
dashed arrow) showing a combination of longitudinal and transverse polarization at
a −19.7◦ angle. The transverse data (solid blue arrow) indicates an almost pure
horizontal polarization at a 92.2◦ angle relative to the beam axis [132].

The Qweak experiment [47] utilized two data acquisition modes similar to those

described for the MOLLER experiment in Section 3.5: the high beam-current in-

142



tegrating mode and the low beam-current counting mode. The apparatus was pre-

dominantly operated in integrating mode, where the beam current could reach up

to 180µA. In this mode, the light yield from individual events was integrated over a

helicity window. Event mode data, typically collected at beam currents of a few µA,

were essential for separating the contributions from electrons and pions within the

integrated data. Utilizing eight MDs and two types of runs (mixed and transverse),

sixteen asymmetry values were determined from the integrating data-taking mode.

These asymmetry values, denoted by Aij, were calculated using the normalized yield

difference as follows:

Aij =
Y +
ij − Y −

ij

Y +
ij + Y −

ij

, (5.25)

where Y ± represents the integrated signal yield corresponding to the right-handed/left-

handed (±) helicity states (see Section 2.2). Here, i indicates the detector number,

and j represents the run type.

In event mode, the pulse height for each event is individually recorded. Pions,

minimum ionizing particles at these energies, exhibit minimal showering when passing

through the 10.2 cm thick lead wall in front of MD7, resulting in a modest energy de-

posit in the quartz detectors. In contrast, electrons, due to their lower mass, are more

readily attenuated by the lead, as detailed in Section 2.6.5 and illustrated in Figure

2.11. Interactions with the lead result in energy loss via emitted gamma rays, which

may convert into electron-positron pairs. These secondary particles, possessing suffi-

cient energy, can further emit photons, thus propagating an electromagnetic shower

rich in electrons and positrons. This cascade amplifies the signal of an incident elec-

tron, leading to a greater light deposition through Cherenkov radiation in the MDs

for electron events compared to pion events. A soft neutral background, which arose

from the secondary scattering of primary scattered electrons or pions, contributed

additional signals within the MDs. This background effect was quantified in event

mode and subsequently corrected in each MD by applying a scaling factor, (1− f i
NB).

Comprehensive details on the measurement techniques fall beyond the scope of

this thesis chapter but are thoroughly documented in Chapter 4 of Reference [132],

a foundational thesis for the Qweak experiment. Considering all the measurement
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processes, the measured asymmetries were parameterized as follows [132]:

Ameas
ij = (1− f i

NB)
[
(1− f i

π)(A
L
e cos θ

j
P + AT

e sin θjP sinϕi)

+ f i
π(A

L
π cos θ

j
P + AT

π sin θjP sinϕi)
]
,

(5.26)

where f i
π represents the fractional yield of pions detected by the MD i (where i is the

number of detectors), the longitudinal asymmetry attributed to electrons (pions) is

denoted by AL
e(π), and the transverse asymmetry by AT

e(π). The polarization angle for

run type j (where j is the run type) is given by θjP , and the neutral background yield

fraction for MD i is f i
NB. The azimuthal angle placement of the MDs is defined by

ϕi, with specific values such as ϕ1 = 0◦ and ϕ2 = 45◦, among others. The results of

these measurements are concisely summarized in two tables: Table 5.1 presents the

data for the mixed dataset, and Table 5.2 details the transverse dataset. These tables

provide the necessary data inputs for the subsequent analytical methods.

Table 5.1: Summary of Measurement Results: Mixed Dataset

MD1 MD2 MD3 MD4 MD5 MD6 MD7 MD8

Ameas
-2.233
±0.570

-2.233
±0.570

-3.183
±0.560

-2.573
±0.580

-2.093
±0.580

0.167
±0.580

1.077
±0.950

-1.483
±0.570

fπ
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.81

±0.05
0.096

±0.029

fNB
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.51

±0.09
0.063

±0.006

θ
-19.7◦

±1.9◦
-19.7◦

±1.9◦
-19.7◦

±1.9◦
-19.7◦

±1.9◦
-19.7◦

±1.9◦
-19.7◦

±1.9◦
-19.7◦

±1.9◦
-19.7◦

±1.9◦

ϕ 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

As shown in the tables, the fractional yield values for pions and the neutral back-

ground are consistent across both datasets because the number of photoelectrons gen-

erated in a material does not depend on the polarization direction. However, these

values are significantly higher in MD7, designed to block electrons and predominantly

detect pions. Additionally, the values of θ, ϕ, and their associated uncertainties re-

main constant for all MDs.

To extract the component asymmetries, AL
e , A

T
e , A

L
π , and AT

π , from the measured
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Table 5.2: Summary of Measurement Results: Transverse Dataset

MD1 MD2 MD3 MD4 MD5 MD6 MD7 MD8

Ameas
2.587

± 2.870
6.147

±2.850
6.587

±2.800
2.727

±2.880
-4.493
±2.900

-1.193
± 2.880

18.617
±4.640

-3.993
±2.860

fπ
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.096

±0.029
0.81

±0.05
0.096

±0.029

fNB
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.063

±0.006
0.51

±0.09
0.063

±0.006

θ
92.2◦

±1.9◦
92.2◦

±1.9◦
92.2◦

±1.9◦
92.2◦

±1.9◦
92.2◦

±1.9◦
92.2◦

±1.9◦
92.2◦

±1.9◦
92.2◦

±1.9◦

ϕ 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

asymmetries in Equation 5.26, two methods are described. The first method is a

Many-Worlds Monte Carlo minimization approach, implemented in [132] and [47],

and used in original extraction. I have not personally conducted any work on this

method. My only contribution has been to acquire the code and inputs to regener-

ate the results independently for comparison and validation purposes. The second

method is the new Bayesian analysis, which is the primary subject of this chapter.

The subsequent subsections detail these two methods, respectively.

5.3.2 Many-Worlds Monte Carlo minimization Method

To extract the component asymmetries, AL
e , A

T
e , A

L
π , and A

T
π , from the measured

asymmetries in Equation 5.26 using the Many-Worlds Monte Carlo minimization ap-

proach [132], a value for each input quantity was randomly selected from a Gaussian

distribution about their mean with widths equal to their uncertainties. These ran-

dom values were then used to calculate the asymmetry in each MD and for each

polarization configuration via the following equation:

Aij
calc = (1− f̃ i

NB)

[
(1− f̃ i

π)(A
L
e cos θ̃

j
P + AT

e sin θ̃jP sin ϕ̃i)

+ f̃ i
π(A

L
π cos θ̃

j
P + AT

π sin θ̃jP sin ϕ̃i)

]
,

(5.27)
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where a tilda over a quantity indicates a randomly selected value for that quantity.

The function δ, where

δ2dof =
∑(

Aij
meas − Aij

calc

)2
, (5.28)

was then minimized with respect to the unknown component asymmetries. This

resulted in one possible set of values for each component asymmetry, AL
e , A

T
e , A

L
π ,

and AT
π . The randomization and minimization process was repeated 106 times, giving

106 extracted values for each of the four component asymmetries and 106 values for

the calculated asymmetries. The root mean squared of the resulting distributions are

taken as their uncertainties. The results from this analysis method are summarized

in Table 5.3. In the following subsection, the implementation of Bayesian analysis

using the same inputs and unknowns is explained.

Table 5.3: Asymmetries Components and Uncertainties (Monte Carlo minimization
[47])

Asymmetry Value (ppm) Uncertainty (ppm)

AL
e -5.25 1.49

AT
e 12.3 3.6

AL
π 25.4 9.0

AT
π -60.1 19.3

5.3.3 Bayesian Analysis Method

The Bayesian framework comprises data, parameters, and a model. As detailed

in Section 5.2, the model uses prior knowledge and measured data to update beliefs

about the parameters reflected in the posterior distribution.

For the Bayesian analysis of data from the Qweak experiment [47], the same data

(Ameas, fπ, fNB, θ, ϕ) and parameters (AL
e , A

T
e , A

L
π , A

T
π ) as discussed in the previous

subsection are used. No prior knowledge is assumed, indicating that the posterior

is influenced by the measured data. Moreover, Equation 5.27 is implemented as the

model, as outlined in Subsection 5.2.4. The code for this analysis is available in [133].

The outcomes of the Bayesian analysis, which determine the asymmetry components

and their uncertainties, are concisely summarized in Table 5.4. Comparing Table 5.4
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Table 5.4: Asymmetries Components and Uncertainties (Bayesian analysis)

Asymmetry Value (ppm) Uncertainty (ppm)

AL
e -4.9 0.7

AT
e 12.0 2.0

AL
π 22.8 5.9

AT
π -55.9 14.5

with Table 5.3 shows that the Monte Carlo minimization method consistently resulted

in larger absolute values and uncertainties across all measured asymmetries relative

to Bayesian analysis. In the subsequent subsection, we will explore the comparative

study of Bayesian and Monte Carlo minimization methods to validate and clarify

these findings further.

5.3.4 Bayesian Analysis Vs Monte Carlo minimization

To evaluate the performance of the Bayesian analysis technique, asymmetry com-

ponents derived using both approaches were substituted into Equation 5.26. The

resulting asymmetry values, referred to as fitted asymmetry, are presented for all

MDs across two datasets. The corresponding values, along with their associated un-

certainties, are shown in the plots of Figure 5.4. This facilitates a direct comparison

of the two statistical methods in terms of their fit to the measured data. In both

datasets, the Bayesian analysis method (red circles) provides a closer fit to the mea-

sured asymmetry (blue squares) than the Monte Carlo minimization method (black

triangles). This indicates the Bayesian method’s robustness in parameter estimation,

which may be attributed to its systematic incorporation of prior information and

subsequent data-driven updates. The error bars, representing uncertainties in the

measured asymmetries, are consistently smaller in the Bayesian approach compared

to the Monte Carlo minimization method. Furthermore, the Bayesian method’s error

bars show less variation across detector numbers, suggesting a more stable estimation

process, whereas the Monte Carlo method’s uncertainties appear more varied.

The chi-squared (χ2) statistic, as discussed in chapter 27 of Reference [134], is

intimately connected to the concept of goodness of fit. The goodness of fit is a statis-
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Figure 5.4: Comparative analysis of measured and fitted asymmetry values across
detectors. Plots illustrate the asymmetry measurements (depicted as blue squares)
and compare them with the asymmetry values derived through Bayesian inference
(shown as red circles) and Monte Carlo simulations (represented by black triangles).
The data spans eight detectors and encompasses two distinct datasets, with error bars
indicating the measurement uncertainty for each data point. Dashed lines in both
data sets show the fitted sine wave in the Bayesian analysis, which is different from
those obtained using the Monte Carlo method [47].

tical measure that enables us to examine how well the distribution of residuals, or the

differences between observed and fitted values, aligns with the expected distribution

of experimental uncertainties. We commence by assuming that each observed data

point, denoted as Y , is drawn from a distribution with a mean µ and variance σ2,

symbolically expressed as Y ∼ D(µ, σ2). When we conduct a fitting procedure, we

generate residuals ei for each data point, which are defined as the difference between

the measured value yi and the fitted value ŷi:

ei = yi − ŷi. (5.29)

These residuals are expected to follow a distribution with zero mean and variance

equal to the square of the standard deviation of the measurements:

e ∼ D(0, σ2
e). (5.30)
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To gauge the goodness of fit, we normalize the residuals by the standard deviation σ

and subsequently square this quantity to define the χ2 as follows:

χ2 =
N∑
i=1

(
ei
σe

)2

. (5.31)

The normalized residuals e
σe

are expected to follow a standard normal distribution

D(0, 1). The sum of the squares of these normalized residuals gives rise to a χ2 dis-

tribution. Notably, the mean of the χ2 distribution is equal to its degrees of freedom,

not the total number of observations. This is because the degrees of freedom account

for the number of parameters estimated in the model. Each parameter estimation

reduces the number of independent pieces of information by one, leading to a lower

effective number of observations used in the calculation.

We have determined the χ2 values for both Bayesian analysis and Monte Carlo

minimization methods:

χ2
Bayesian = 1.2,

χ2
Monte Carlo = 1.3.

The comparative analysis of these χ2 values verified that the Bayesian method pro-

vides a better fit to the experimental data of the Qweak experiment. This aligns with

the conclusions presented in Figure 5.4.

To understand why the Bayesian method shows a better fit to the experimental

data of the Qweak experiment and smaller uncertainties, the extracted asymmetry

components from the two methods are compared in Figure 5.5. The symmetric shape

of the posterior distributions obtained through the Bayesian method contrasts with

the asymmetry and pronounced tails observed in the Monte Carlo results. These tails

in the Monte Carlo method indicate the presence of greater sensitivity to statistical

fluctuations, contributing to larger uncertainties in the extracted asymmetry values.

In contrast, the Bayesian approach inherently incorporates prior distributions and

experimental data in each iteration, resulting in posterior distributions that are better

constrained and centered around the most probable values. This integration of prior
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knowledge with the observed data during the iterative process of Bayesian inference

naturally leads to the suppression of extreme outliers and the production of more

symmetric distributions with reduced uncertainties.

Figure 5.5: Comparative analysis of measured and fitted asymmetry values across
detectors. Plots illustrate the asymmetry measurements (depicted as blue squares)
and compare them with the asymmetry values derived through Bayesian inference
(shown as red circles) and Monte Carlo simulations (represented by black triangles).
The data spans eight detectors and encompasses two distinct datasets, with error
bars indicating the measurement uncertainty for each data point.

While the Bayesian analysis method yielded a better fit to the Qweak experimental
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data as an example of PVES experiments, it is important to recognize that this does

not universally establish Bayesian analysis as the superior method. Different analysis

methods have unique advantages and are better suited to specific data types and

research questions. The selection of an appropriate statistical method should be

guided by the data characteristics, experimental design, and the specifics of each

investigative scenario.

Although the choice of statistical method plays a significant role in analyzing

experimental data, a thorough understanding of uncertainties and their interdepen-

dencies is equally important for achieving reliable results. In PVES experiments,

capturing the full range and complexity of uncertainties is crucial for accurate data

analysis. The covariance matrix quantifies the uncertainty and relationships between

variables by measuring how changes in one variable are associated with changes in

another. For experiments aimed at detecting small asymmetry signals, a compre-

hensive understanding of these relationships is essential to accurately determining

parameters. The covariance matrix is calculated as follows:

Cov(X, Y ) =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) (5.32)

where Cov(X, Y ) is the covariance between two variables X and Y , Xi and Yi are

individual observations from variables X and Y respectively, X̄ and Ȳ are the means

of X and Y , and n is the number of observations. For a set of variables, the covariance

matrix is a square matrix giving the covariance between each pair of elements. For

a dataset with m variables, the covariance matrix Σ is an m×m matrix where each

element Σij is the covariance Cov(Xi, Xj) between the ith and jth variables. It is

calculated as:

Σ =


Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xm)

Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xm)
...

...
. . .

...

Cov(Xm, X1) Cov(Xm, X2) · · · Cov(Xm, Xm)

 (5.33)
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The covariance matrix in the case of the Qweak experiment [47], for the longitudi-

nal and transverse electron asymmetry (AL
e and AT

e ) and longitudinal and transverse

pion asymmetry (AL
π and AT

π ), would be as follows:

Σ =


Cov(AL

e , A
L
e ) Cov(AL

e , A
T
e ) Cov(AL

e , A
L
π ) Cov(AL

e , A
T
π )

Cov(AT
e , A

L
e ) Cov(AT

e , A
T
e ) Cov(AT

e , A
L
π ) Cov(AT

e , A
T
π )

Cov(AL
π , A

L
e ) Cov(AL

π , A
T
e ) Cov(AL

π , A
L
π ) Cov(AL

π , A
T
π )

Cov(AT
π , A

L
e ) Cov(AT

π , A
T
e ) Cov(AT

π , A
L
π ) Cov(AT

π , A
T
π )

 (5.34)

In this matrix, each element represents the covariance between the respective asymme-

try parameters, reflecting their interdependencies. For instance, Cov(AL
e , A

T
e ) quan-

tifies the extent to which the longitudinal and transverse electron asymmetries vary

together within the experimental data. The covariance matrices for the Monte Carlo

minimization and Bayesian methods are as follows:

Covariance Matrix with Uncertainty - Monte Carlo minimization analysis:
1.5± 1.2 −1.2± 1.1 −10.3± 6.5 9.0± 5.1

−1.2± 1.1 6.1± 3.0 10.9± 6.4 −26± 13

−10.3± 6.5 10.9± 6.4 97± 44 −83± 34

9.0± 5.1 −26± 13 −83± 34 221± 68


Covariance Matrix with Uncertainty - Bayesian analysis:

0.4± 0.2 −0.6± 0.4 −2.9± 1.1 6.0± 2.9

−0.6± 0.4 3.2± 1.2 6.1± 2.9 −17.9± 8.5

−2.9± 1.1 6.1± 2.9 26.7± 9.6 −57± 28

6.0± 2.9 −17.9± 8.5 −57± 28 165± 83


It is evident that the two matrices are in agreement within their respective uncer-

tainties. This agreement indicates that both methods are capturing the underlying

physics model effectively. However, a notable difference is observed in the magnitude

of the components and their associated uncertainties: the values in the Monte Carlo

minimization matrix are generally larger than those in the Bayesian analysis matrix.
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To examine the reasoning behind the larger uncertainties associated with the

Monte Carlo method, a visual analysis of the distribution of each component in the

covariance matrix across all iterations is performed. Histograms of all 16 elements of

the Monte Carlo covariance matrix provide a graphical representation that can reveal

the underlying distribution and variance within the data. These histograms allow for

a more intuitive understanding of where the larger values and broader uncertainty

ranges originate, as depicted in the histograms in Figure 5.6.

The histograms derived from the Monte Carlo covariance matrix elements reveal

pronounced tails and differences between the mean and the mode, suggesting skewed

distributions rather than symmetric ones. These features indicate a non-negligible

probability of extreme values far from the mean, which is not the mode in many cases.

This discrepancy highlights that the central tendency of the data is not uniformly

distributed around a single peak but exhibits significant variations. Such outliers in

the tails and the different mean and mode values can inflate the variance, leading to

larger confidence intervals and, consequently, greater overall uncertainty in parameter

estimates. However, the Bayesian analysis focuses on reproducing the mode with

symmetric uncertainty, reflecting the underlying Gaussian assumptions about how

uncertainties are represented. Furthermore, the shape and spread of these histograms

provide insights into correlations between parameters. When two elements display

similarly skewed distributions with tails extending in the same direction, this suggests

potential correlations. These interdependencies are crucial for understanding the

covariance matrix’s off-diagonal elements and play a significant role in interpreting

the overall experiment. These correlations can be directly obtained from the Bayesian

analysis and be compared with the histograms’ shapes shown in Figure 5.6. The

contour plots from the Bayesian analysis, as depicted in Figure 5.7, illustrate the

correlations between different pairs of parameters. Similar to the pronounced tails

and skewed distributions observed in the histograms, these contour plots display

elongated shapes and asymmetries, indicating strong correlations.

It is evident that AL
e is negatively correlated with AT

e , similar to the negative

correlation observed between AL
π and AT

π . As previously discussed, pure longitudinal

polarization results in pure longitudinal asymmetry and deviations from this ideal
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Figure 5.6: Histograms representing the distribution of the 16 elements of the Monte
Carlo covariance matrix across all iterations. Each panel displays the distribution
for a different covariance element, denoted as Cov(Ai, Aj) in parts per billion (ppb).
The mean, mode, and standard deviation for each distribution are indicated by the
dashed blue line, solid red line, and the values listed in the legends, respectively.

state give rise to transverse asymmetry, thereby causing these negative correlations.

Additionally, there is a strong negative correlation between AL
e and AL

π , as well as

between AT
e and AT

π . In contrast, AT
e is positively correlated with AL

π , and A
L
e is pos-

itively correlated with AT
π . The visual observations in Figures 5.6 and 5.7 underscore
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Figure 5.7: Correlation plots and distribution histograms for parameter estimates
from Bayesian analysis, displaying pairwise relationships between AL

e , A
T
e , A

L
π , and

AT
π . Each row and column correspond to these parameters, with histograms on the

diagonal showing the distributions of individual parameters and contour plots off-
diagonal with decile lines visualizing the density distribution from 10% to 90% .

the importance of comprehensive analysis and interpretation of covariance matrix and

correlation elements, which are essential for grasping different methods’ performance

and its derived uncertainties in the context of PVES experiments.
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5.4 Enhancing Precision of Extracted Quantities

in the MOLLER Experiment

This section examines the steps of applying Bayesian analysis to the MOLLER

experiment, a methodological transition from the Qweak experiment’s frequentist ap-

proach. The emphasis is on adapting and refining the Bayesian framework to address

the unique challenges and configurations of the MOLLER experiment [21]. This effort

requires a detailed comparison of the experimental setups, underlying assumptions,

and analytical methodologies of the two experiments. By navigating these intricacies,

the section establishes a foundation for a comprehensive evaluation of the inputs, pa-

rameters, and models that form the basis of the Bayesian analysis, preparing the way

for a thorough interpretation of the MOLLER experiment’s outcomes.

5.4.1 Underlying Assumptions: MOLLER Experiment ver-

sus Qweak Experiment

There are differences between the Qweak [47] and MOLLER [21] experiments

when applying Bayesian analysis. These differences arise from different experimen-

tal geometries and configurations, data types (mock asymmetry values in MOLLER

versus measured asymmetry values in Qweak), and polarization angles.

The primary distinction lies in the differing design and geometry between the

two experiments. Unlike the Qweak experiment [47], which employs eight MDs with

MD7 serving as the pion detector, the MOLLER experiment [21] features a main

detector array for ring 5 comprised of 84 modules distinct from the pion detector,

which consists of 28 modules. Consequently, the Bayesian analysis must incorporate

asymmetry values from both sets of detectors. As a result, the configuration of Tables

5.1 and 5.2 is notably altered. Originally comprising eight columns to correspond with

the Qweak experiment’s eight MDs, these tables would now expand to accommodate

the MOLLER experiment’s design, featuring a total of 112 columns, which include 84

for the main detector ring 5 and an additional 28 for the pion detector. Note that in

this thesis, the analysis will focus on the main detector ring 5 and the pion detector.
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In future work, it will be expanded to include all six rings of the main detectors,

comprising 224 modules, the pion detector, and the ShowerMax, each including 28

modules.

The second distinction lies in the polarization angles, which remain consistent in

the geometric definition as outlined in Section 5.3.1: longitudinal components are

aligned with the beam axis, and transverse components are oriented perpendicular to

the beam in the horizontal plane, leading to the respective longitudinal or transverse

asymmetries. However, the actual polarization angles vary between the experiments.

As detailed in Section 5.3.1, the Qweak experiment [47] received a beam with mixed

polarization, depicted in Figure 5.3. The beam’s polarization angle, denoted as θP ,

was measured at −19.7◦ ± 1.9◦, forming the basis for the mixed dataset. In a sub-

sequent run, the beam polarization angle was set to 92.2◦ ± 1.9◦, constituting the

transverse dataset. The MOLLER experiment will assume pure longitudinal polar-

ization to generate the longitudinal dataset and pure transverse polarization to form

the transverse dataset. An uncertainty of one degree is incorporated to account for

any deviations. This one-degree uncertainty in polarization angles is necessary to sup-

press transverse polarization effects by averaging asymmetries across the full azimuth

range. However, imperfect cancellation of these effects could result in significant sys-

tematic uncertainties. A transverse polarization component can introduce azimuthal

modulation in the measured asymmetry, potentially amplifying these systematic un-

certainties. To mitigate this, polarization components will be monitored continuously

in the experimental hall by measuring the transverse scattering asymmetry with an

accuracy below 1◦ within a few hours. Therefore, in the Bayesian analysis for the

MOLLER experiment, the longitudinal polarization angle is set to 0◦ ± 1◦, and the

transverse polarization angle is set to 90◦ ± 1◦, as depicted in Figure 5.8.

Another distinction arises from the complexity of the model used in the Bayesian

framework for the MOLLER experiment. The Qweak experiment employed a rel-

atively straightforward model by assuming an almost entirely horizontal transverse

orientation for the spin of the electron beam [47]. In contrast, the MOLLER ex-

periment necessitates a more intricate model that accounts for spin variations. As

a result of considering spin variation in the horizontal plane, the spin angles in the
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Figure 5.8: Top-down view of beam polarization: The red arrow indicates the down-
stream direction of the beam axis, the green arrow represents pure longitudinal po-
larization, and the blue arrow depicts pure transverse polarization.

longitudinal data-taking, when the polarization angle is set to 0◦ ± 1◦, span from −π
to +π, represented by [−π,+π]. In the transverse data-taking, when the polarization

angle is set to 90◦ ± 1◦, the spin angle is close to zero, as it is in the same plane as

the polarization vector, represented by 0◦ ± 1◦.

The next distinction involves the generators considered in the Bayesian analysis.

In the Qweak experiment, the inputs include the effects of all types of generators,

including Møller electron, pion, elastic, and inelastic interactions. However, for the

Bayesian analysis of the MOLLER experiment in this thesis, only Møller electron

and pion generators are considered. This means that the inputs used in this analysis

do not account for the effects of elastic and inelastic generators. Incorporating all

generators into the Geant4 simulations represents a future step for this line of research,

which will provide a more comprehensive understanding of the experimental data and

enhance the precision of the Bayesian analysis applied to the MOLLER experiment.

The last distinction is that while the Qweak experiment [47] has been completed,

and its data are available for further analysis, the MOLLER experiment [21] has not

yet been conducted, and thus no empirical data are available. In the context of the

MOLLER experiment, it is necessary to generate synthetic data, referred to as mock

asymmetry values. To create this mock data, we simulate random variables based on
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known mean values and their associated uncertainties. The methodologies for deter-

mining the mean values of asymmetry components are as follows: The asymmetry

components for Møller and pion generators across various detectors (main detector

ring 5 and pion detector) are simulated. These components have been categorized

into longitudinal and transverse components (vertical and horizontal) for both Møller

and pion asymmetries at the main and pion detectors. The equations presented below

show how these various asymmetry components are combined to contribute to the

final simulated asymmetry values, denoted as Atrue
ij , considering all inputs:

Atrue
ij =(1− f i

π)
(
AL

e (i, j) cos(θ
j
P ) +

(
ATV

e (i, j) sin(ϕj
P ) + ATH

e (i, j) cos(ϕj
P )
)
sin(θjP )

)
+ f i

π

(
AL

π (i, j) cos(θ
j
P ) +

(
ATV

π (i, j) sin(ϕj
P ) + ATH

π (i, j) cos(ϕj
P )
)
sin(θjP )

)
,

(5.35)

where Atrue
ij represents the final expected asymmetry values from the simulations for

each of the 84 modules in the main detector and the 28 modules in the pion detector.

The terms 1 − f i
π and f i

π denote the Møller and pion yield fractions, respectively,

for each detector module i. These fractions, which vary between the main and pion

detectors, are calculated by dividing the number of generated photoelectrons from

the pion generator by the total number of generated photoelectrons from both the

pion and Møller generators at the detector modules. The longitudinal and trans-

verse asymmetry values (vertical and horizontal) are denoted by AL
e (i, j), A

L
π (i, j),

ATV
e (i, j), ATH

e (i, j), ATV
π (i, j), and ATH

π (i, j), respectively. The angle θjP represents

the polarization angle for dataset j. The angle ϕj
P is the angle in the azimuthal plane

(x-y plane) from the x-axis to the projection of the spin vector onto this plane. The

index i indicates the number of modules in the main (pion) detector, while the index

j corresponds to the dataset, whether longitudinal or transverse.

These Atrue
ij values provide precise estimates and are used as the mean values

for generating mock asymmetry values. To calculate the uncertainties associated

with these mean values, one might initially consider the propagation of uncertainty.

However, for the mock data, we need to calculate uncertainty reflecting the measured

asymmetry values in the actual experiment. This uncertainty is determined based
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on the rate of particles per detector module and the run time, given by 1√
rate×run time

.

Therefore, the uncertainties for the main and pion detectors can be formulated as:

σMain detector =
1√

Total rate at main detector× time window
,

σPion detector =
1√

Total rate at pion detector× time window
,

where the total rate is the sum of the rates from the Møller and pion generators, and

the time window refers to the period for one measurement, assuming stable conditions

in the beam, accelerator, and experiment. This represents minimal uncertainty since

there will be excess uncertainty in other terms, but that does not affect the analysis.

These asymmetry uncertainties apply to both longitudinal and transverse datasets.

Although the time window remains consistent, the total run time is divided differ-

ently: 90% is allocated to the longitudinal measurement, and 10% to the transverse

measurement. The reason for the 90% allocation is that the main measurement of

the experiment is the longitudinal asymmetry. In contrast, the transverse asymmetry

is used to correct the longitudinal asymmetry for transverse effects. This allocation

ensures that the primary focus remains on the longitudinal measurement, with suffi-

cient data to make necessary corrections using the transverse measurement. Note that

this assumption is based on the Qweak experiment and Reference [74] for MOLLER.

However, other assumptions could have been made.

Now, mock asymmetry values, Amock, can be generated using a normal distribu-

tion where the simulated true asymmetry values, Atrue, are used as the means. The

calculated uncertainties, denoted as σ, are used as the standard deviations. This

process can be mathematically represented as follows:

Amock ∼ N (Atrue, σ) (5.36)

This approach introduces variation in the mock data, making them distinct from the

true values. This variation is generated to simulate actual experimental conditions

where idealized assumptions of simulations no longer hold.

Figure 5.9 illustrates the generated mock asymmetry for the longitudinal and
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transverse datasets at the pion detector, showing the variation in mock asymmetry

values compared to the true values. Similarly, Figure 5.10 presents the comparison

for the main detector. In the two figures, the upper plots compare true asymmetry

values and mock asymmetry averages. Green diamonds indicate the true asymmetry

values, while blue squares represent the mock asymmetry averages. These averages are

calculated from the random values within the range of uncertainty, which is depicted

by the shaded areas around the mock values. The shaded areas represent the range

of individual measurements, while the blue squares show the averages of all these

measurements. Below each asymmetry comparison plot are the normalized residual

plots, which highlight the deviation of the mock averages from the true values for each

detector module. A normalized residual value close to zero suggests a mock average

closely matching the true value. Conversely, normalized residual values significantly

different from zero indicate a notable discrepancy. The histograms adjacent to the

normalized residual plots detail the distribution of these deviations. They are a useful

tool for assessing the overall consistency of the mock data in relation to the true data.

The mean and RMS values of the histograms quantify the central tendency and the

spread of the normalized residual values, with values close to zero and an RMS near

one suggesting that the mock averages are well-aligned with the true values.

For both the pion and main detectors, the longitudinal measurements exhibit bet-

ter RMS values than the transverse ones, which aligns with our expectations given

the higher quantity of longitudinal measurements. Specifically for the pion detector,

the mean of normalized residual values stands at -0.20 for both types of measure-

ments. However, the RMS of 1.21 for transverse measurements indicates a broader

spread than the RMS of 1.07 for the longitudinal measurements. In the case of the

main detector, the longitudinal measurements present a mean normalized residual

value of 0.07 and an RMS of 0.96, suggesting tighter agreement than the transverse

measurements, which have a mean of -0.15 and an RMS of 0.91.

Now that we have mock asymmetry values, we can feed these values in the fol-
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Figure 5.9: True and average mock asymmetry in the pion detector. The longitudinal
and transverse datasets are displayed in the top and bottom plots. Green diamonds
show true asymmetry values from simulations, blue squares represent the average of
mock asymmetry values from analysis, and shaded areas indicate the measured un-
certainty for each measurement. Normalized residual plots and histograms illustrate
the deviation between the datasets for each module.

lowing equation and extract asymmetry components, AL
e , A

T
e , A

L
π , and A

T
π .

Amock
ij = (1− f i

π)
(
AijA

L
e cos(θ

j
P ) + CijA

T
e sin(θjP )

)
+ f i

π

(
BijA

L
π cos(θ

j
P ) +DijA

T
π sin(θjP )

)
,

Aij = NAL
e (i,j)

,

Bij = NAL
π (i,j)

,

Cij = NATV
e (i,j) sin(ϕ

j
P )(i, j) +NATH

e (i,j) cos(ϕ
j
P )(i, j),

Dij = NATV
π (i,j) · sin(ϕj

P )(i, j) +NATH
π (i,j) cos(ϕ

j
P )(i, j),

(5.37)
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Figure 5.10: True and mock asymmetry in the main detector. The top plot shows
longitudinal data, and the bottom plot shows transverse data. Green diamonds mark
true asymmetry values, while blue squares represent the average mock asymmetry
values. Shaded areas indicate the measured uncertainty for each measurement. The
normalized residual plots and the histograms beside them quantify the agreement and
consistency across detector modules.
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where Amock
i,j represents the generated mock asymmetry values for the pion and main

detector modules. AL
e , A

T
e , A

L
π , and AT

π represent the Møller and pion asymmetry

components that need to be extracted. The terms Aij, Bij, Cij, and Dij are referred

to as kinematic coefficients, which best replicate the seven-fold symmetry nature of

the experiment and the existence of identical-particle scatterings discussed before, in

contrast to the behaviour observed in Qweak. NAL
e
, NAL

π
, NATV

e
, NATH

e
, NATV

π
, and

NATH
π

are normalized asymmetry values obtained by normalizing AL
e , A

L
π , A

TV
e , ATH

e ,

ATV
π , and ATH

π in Equation 5.35. The key point is that the normalizing factors for ob-

taining the normalized asymmetry values should be independent of the experiment’s

kinematics. To calculate normalizing factors, AL
e from Equation 2.11, AT

e from Equa-

tion 2.24, and AL
π and AT

π from Equation 2.36 are simulated within the acceptance

range of the experiment, and the maximum values obtained are considered as the

normalizing factors. Other parameters align with those in Equation 5.35.

With the foundational approach and specific methodologies applied in the MOLLER

experiment’s Bayesian analysis established, we now transition to a more detailed ex-

amination of the statistical interpretations and the specifics of modelling precision.

The following section explores the application of these principles and their practical

implications for enhancing correction precision.

5.4.2 Applying Bayesian Analysis

As explained, the Bayesian framework comprises data, parameters, and a model.

In the case of the MOLLER experiment, referring to Equation 5.37, the data include

f i
π, θ

j
P , ϕ

j
P , Aij, Bij, Cij, and Dij. The parameters are the asymmetry components

that should be extracted, AL
e , A

T
e , A

L
π , and AT

π . The model is defined by Equation

5.37 and has no prior knowledge. It is applied separately for the pion and main detec-

tors and for longitudinal and transverse measurements. Consequently, the asymmetry

components are extracted using four equations: two for the pion detector (for longi-

tudinal and transverse measurements) and two for the main detector (for longitudinal

and transverse measurements).

In addition to the inputs discussed previously, the technical inputs are summarized
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in Table 5.5. This table provides a comprehensive summary of the technical inputs

Table 5.5: Technical Inputs for the Bayesian Analysis of the MOLLER Experiment.

Input Data Value Explanation

Total Run Time (N) 8256 hours One Measurement Per Hour
Longitudinal

Run Time (NL)
7430 hours One Measurement Per Hour

Transverse
Run Time (NT )

825 hours One Measurement Per Hour

num MainDet 84 Number of Main Detector Modules
num PionDet 28 Number of Pion Detector Modules

θP (L) normal (0◦, 1◦) Longitudinal Polarization Angle
(Polar Angle)

θP (T ) normal (90◦, 1◦) Transverse Polarization Angle
(Polar Angle)

ϕP (L) normal (0◦, π) Longitudinal Polarization Angle
(Azimuthal Angle)

ϕP (T ) normal (0◦, 1◦) Transverse Polarization Angle
(Azimuthal Angle)

utilized in the Bayesian analysis of the MOLLER experiment. These inputs include

detailed specifications such as the total run time, specific run times for longitudinal

and transverse measurements, and the number of modules in the main and pion

detectors. Additionally, the table lists the statistical distribution of experimental

parameters, like the polarization angles. These parameters are essential for accurately

modeling the experiment’s conditions and are important for the subsequent analysis

and extraction of asymmetry components.

To conceptualize how these parameters are incorporated into the actual experi-

ment, consider the following scenario: there are two runs in the experiment. The first

run takes 7,430 hours, and the second takes 825 hours. In the first run, the polariza-

tion angle is set to the longitudinal configuration with a deviation of one degree. In

the second run, the polarization angle is set to the transverse configuration degrees

with the same uncertainty of one degree. In both runs, there is one measurement

per hour. In the end, the parameters we measure are called mock asymmetry values

for both the pion and main detectors in two datasets (longitudinal and transverse).

165



Then, the mock asymmetry values and other inputs are substituted for the analysis

into the Bayesian model (Equation 5.37). The number of iterations for the longitudi-

nal component is 7,430, and for the transverse component is 825, with 10,000 samples

per iteration. The results of the extracted asymmetry components and associated un-

certainties are summarized in Table 5.6 and compared with the inputs of the analysis.

Table 5.6: Comparison of asymmetry values and uncertainties: Inputs versus Outputs

AL
e (ppm) AT

e (ppm) AL
π (ppm) AT

π (ppm)

Inputs -28.00 13845 28400 -53667
Outputs -28.40 13823.0 28486 -53762

± 0.51 ± 9.6 ± 75 ± 190

Table 5.6 compares the input asymmetry values to the Bayesian model and the

outputs obtained from the Bayesian analysis. For AL
e , the input value of -28.00 ppm

closely matches the output value of -28.40 ppm with an uncertainty of ±0.51 ppm,

indicating strong agreement. However, for AT
e , the input value is 13,845 ppm, and

the corresponding output is 13,823.0 ppm with an uncertainty of ±9.6 ppm, showing

a slight discrepancy outside the uncertainty range. The AL
π input of 28,400 ppm is

slightly exceeded by the output of 28,486 ppm with an uncertainty of ±75 ppm, and

the AT
π input of -53,667 ppm is well-approximated by the output of -53,762 ppm, with

a larger uncertainty of ±190 ppm. Overall, the close alignment between most inputs

and outputs within the uncertainty ranges validates the effectiveness of the Bayesian

model in accurately reproducing the asymmetry values, confirming the reliability and

precision of the analysis.

Another way to verify the results is by substituting the asymmetry components

along with other parameters into the right-hand side of Equation 5.37, computing

Afitted
ij , and deriving another set of asymmetry values, referred to as the fitted asym-

metry values, as done in Qweak and demonstrated in Figure 5.4.

Figure 5.11 provides a comparative analysis of fitted and mock asymmetry aver-

ages for the pion detector in the MOLLER experiment, displaying both longitudinal

(top plot) and transverse (bottom plot) datasets. The blue squares in each plot indi-
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cate the average of mock asymmetry values, while the red circles represent the average

of fitted asymmetry values obtained through Bayesian analysis. The middle plot of

each dataset is for understanding the precision of the fitted and mock asymmetry

averages. Due to the scale of the asymmetry values, the error bars are too small to

be visible in the top plots of each dataset. To address this, the middle plots subtract

the mock asymmetry average from both the mock and fitted asymmetry values, ef-

fectively re-centring the data around zero. This re-centering allows for a more precise

visualization of the error bars, illustrating the precision of the measurements. The

blue dots in these plots represent the residual mock asymmetry values, which are all

at zero as they are subtracted by themselves. The red circles with error bars show

the residual fitted asymmetry values, where the error bars represent the uncertainty

in the mock and fitted values. In the bottom plot of each dataset, the histogram

of the normalized residuals (the difference between the average of fitted and mock

asymmetry values, normalized by the uncertainty in the mock asymmetry values) is

presented, which helps assess the fit quality. For the longitudinal dataset, the resid-

uals are centred around a mean of 0.01 with an RMS of 1.06, indicating a good fit

as the residuals are mainly distributed close to zero. In the case of the transverse

dataset, the residuals have a mean of -0.20 and an RMS of 1.21, showing a slight

offset but still maintaining a reasonable fit quality.

Similarly, Figure 5.12 presents a comparison of fitted and mock asymmetry aver-

ages for the main detector in the MOLLER experiment, encompassing longitudinal

(top plot) and transverse (bottom plot) datasets. In each plot, blue squares rep-

resent the mock asymmetry averages, and red circles denote the averages obtained

from fitted asymmetry values using Bayesian analysis. In the middle plots for each

dataset, the residuals are shown by subtracting the mock asymmetry averages from

both the mock and fitted averages, thus realigning all mock residuals to zero for clar-

ity. This approach is specifically employed to make the relatively small error bars

visible, which are otherwise obscured due to the scale of the asymmetry values. The

histograms in the bottom plots provide a statistical view of the normalized residuals.

For the longitudinal dataset, these residuals cluster around a mean of -0.00 with an

RMS of 0.96, suggesting a tight fit to the model. The transverse dataset displays a
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Figure 5.11: Comparison of average fitted and mock asymmetry values in the
MOLLER experiment’s pion detector, using longitudinal and transverse datasets (top
and bottom plots, respectively). Blue squares represent mock averages, and red circles
show fitted averages with error bars for uncertainty. Middle plots highlight residuals
to underscore small error bars. Bottom plots display normalized residuals and his-
tograms, evaluating fit quality through means and RMS values.
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Figure 5.12: Comparison of average fitted and mock asymmetry values in the
MOLLER experiment’s main detector across longitudinal and transverse datasets (top
and bottom plots, respectively). Blue squares and red circles depict mock and fitted
averages, with error bars for uncertainties. Middle plots focus on residuals, showing
differences between mock and fitted values to enhance error bar visibility. Bottom
plots feature normalized residuals and histograms, assessing fit quality through means
and RMS values.
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slightly wider spread with a mean of -0.15 and an RMS of 0.87, indicating minor devi-

ations but still maintaining overall consistency. These distributions are instrumental

in evaluating the robustness and accuracy of the Bayesian fitting process applied to

the asymmetry measurements of the main detector. These plots serve as a critical

component for validating the Bayesian framework, ensuring the model’s robustness

in accurately predicting asymmetry components before they are applied to actual

experimental data.

The final aspect of the Bayesian analysis for the MOLLER experiment [21] in-

volves determining the correlations between asymmetry components, similar to those

illustrated in Figure 5.7 for the Qweak experiment. As explained in Subsection 5.3.4,

the off-diagonal elements represent the correlation between these components, indi-

cating the extent and direction of their linear relationships. As seen in Figure 5.13,

there is no correlation between the estimated parameters AL
e , A

T
e , A

L
π , and A

T
π . This

absence of correlation demonstrates how the MOLLER setup and kinematics success-

fully separate the main detector signals and the pion detector signals and provide

independent, uncontrolled access to both.

In this chapter, the theoretical and practical landscapes of Bayesian analysis

have been explored, emphasizing its impact on interpreting data from the Qweak

and MOLLER experiments. The detailed examination of Bayesian methods in the

context of the Qweak and MOLLER experiments has highlighted the versatility of

Bayesian analysis in handling complex statistical models and underscored its efficacy

in enhancing measurement precision. By integrating prior information with empirical

data, a robust framework for making informed inferences is offered by Bayesian anal-

ysis, thereby contributing to a deeper comprehension of the underlying phenomena

in PVES experiments.
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Figure 5.13: Correlation plots showing pairwise relationships between the off-diagonal
elements AL

e , A
T
e , A

L
π , and A

T
π in the Bayesian analysis of the MOLLER experiment.

Each plot displays contour lines representing the density distribution from the 10%
to the 90%.
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Chapter 6

Summary and Future Directions

6.1 Summary

The Measurement of a Lepton Lepton Electroweak Reaction (MOLLER) experi-

ment focuses on measuring the parity-violating asymmetry (APV ) in electron-electron

scattering events. The experiment aims to achieve this with a precision of 2.4% ( 0.54

ppb) using an 11 GeV electron beam in Hall A at the Thomas Jefferson National

Accelerator Facility (JLab). The precision measurement of APV requires careful con-

sideration and correction for background processes. Distinguishing between signal

events and background events is crucial for obtaining this level of accuracy in the

MOLLER experiment. This differentiation is addressed through signal corrections,

which can be performed experimentally or non-experimentally.

The experimental method employs background detectors designed to capture the

background particles rather than the main signal. In the context of MOLLER, back-

ground processes can affect the measurement by introducing dilution factors and

asymmetries that need to be accounted for in the final analysis. These parameters

contribute to the correction of APV using the following formula:

APV = Rtot

Aexpt

Pb
−
∑

i f
bkgd
i Abkgd

i

1−
∑

i f
bkgd
i

, (6.1)

where Rtot is an overall normalization factor, Pb is the beam polarization, and Aexpt
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is the experimentally measured asymmetry, which is required to be corrected for

background processes, characterized by fractional dilution factors, f bkgd
i , and asym-

metries, Abkgd
i . The implementation of background detectors enhances the signal-

to-background ratio. However, uncontrollable factors during measurements, such as

beam direction deviations or spin alignment discrepancies caused by source imperfec-

tions, accelerator flaws, external magnetic fields, or subsystem misalignments, necessi-

tate post-measurement corrections, referred to as non-experimental signal correction,

to compensate for these deviations.

Bayesian analysis focuses on its application in improving the extraction of asym-

metry components in Parity-Violating Electron Scattering (PVES) experiments, such

as Qweak and MOLLER. The proposed Bayesian models aim to infer background

asymmetries from observed quantities, thereby enabling more accurate corrections to

the results.

Continuing with exploring experimental details and their impacts, the following

subsection will examine the specific results obtained from the pion detector system.

Subsequently, in Section 6.1.2, the outcomes from the Bayesian analysis will be re-

viewed, which has been instrumental in refining the interpretation of the data ob-

tained.

6.1.1 Pion Detector System Development

The pion detector system, as described in Chapter 4, plays an integral role in the

signal correction process for the MOLLER experiment. The implementation of this

system was underpinned by key material and equipment selections that significantly

influenced its effectiveness.

The choice of Lucite as the active medium, as outlined in Section 4.1.1, was predi-

cated on its suitable properties for the detection environment in the MOLLER exper-

iment. Lucite, with its high optical clarity and compatibility with ultraviolet light,

proved to be an optimal material for capturing the Cherenkov radiation generated by

passing particles. Its selection followed comprehensive analyses that evaluated various

materials on criteria such as radiation hardness, light transmission, and mechanical
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robustness. The final decision to use Lucite was reinforced by its successful histori-

cal use in similar experimental setups, where it demonstrated sustained performance

under high-radiation conditions.

In conjunction with the active medium selection, choosing Photomultiplier Tubes

(PMTs) was critical for the detection system’s efficacy. Section 4.1.2 details the

selection process, culminating in adopting the ET Enterprise 9125B model for the

experiment. This PMT was chosen for its suitable spectral range, high quantum

efficiency, and compatibility with the expected operational conditions. Its charac-

teristics, including the cathode sensitivity and anode current capabilities, matched

the high accuracy requirements for detecting low-level light signals. Integrating these

PMTs with the Lucite detectors forms the foundation of the MOLLER experiment’s

pion detection system, ensuring reliable and precise measurements of background

signals from charged pions.

Implementing the pion detector system was guided by a series of optimizations,

each enhancing the π/e ratio. The optimized design of the pion detector system, which

underwent substantial evolutionary changes as outlined in Section 4.2, demonstrated

a significant performance improvement. The finalized configuration resulted in an

increased π/e ratio of 61.5%±1.7%, as compared to the initial ratio of 0.10%±0.01%

(Table 4.2). This substantial improvement reflects the successful filtration of signals

from low-energy particles attributed to the integrated design of the pion detector

system with the lead donut.

The mechanical design of the pion detector system is a critical aspect of the

MOLLER experiment, ensuring functionality and reliability in a demanding exper-

imental environment. The design process, as detailed in Section 4.3, involved the

development of a light-tight enclosure box composed of four main components: a

Lucite box, a connector for the Lucite and PMT, a PMT housing, and an end cap.

Each component was thoroughly engineered to meet specific requirements, such as

facilitating smooth insertion into the lead donut, maintaining the PMT in position,

and securing the PMT’s voltage divider. These components were showcased in Figure

4.8, highlighting their detailed design and assembly. The final assembly was demon-

strated in Figure 4.9, showing the light-tight enclosure box with all components fitted
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together.

Installation of the enclosure box into the pion detector slot within the lead donut

is achieved using three L-brackets, as depicted in Figure 4.10. Adjustments for man-

ufacturing tolerances and thermal deformation were carefully managed to maintain

the precision of the mechanical fit, with the tolerance analysis illustrated in Figure

4.11. The mechanical design phase culminated in the finalized implementation of the

pion detector module within the lead donut, as shown in Figure 4.13, signifying a ma-

jor design milestone in the project. This comprehensive approach from initial design

to final implementation underscores the precise attention to detail and engineering

expertise that underpins the successful deployment of the pion detector system in the

MOLLER experiment.

Moreover, the cosmic ray tests, as discussed in Sections 4.4, confirmed the simu-

lated predictions, thus verifying the effectiveness of the system’s design. The exper-

imental results from cosmic testing showed that the pion detector system yielded a

threefold increase in the number of detected photoelectrons in its optimized configu-

ration (beam direction aligned to the PMT orientation - configuration (2)) compared

to the initial configuration (beam direction perpendicular to the PMT orientation -

configuration (1)). This agreed with the simulation results, reinforcing the reliability

of the system’s design for background signal detection.

Beam testing at the Mainz Microtron (MAMI), detailed in Section 4.5, provided

an additional layer of experimental validation for the pion detector system. Using an

855.1 MeV electron beam, the pion detector prototype was tested in configurations

analogous to the experimental setup of cosmic tests. The findings from the beam

tests demonstrated an enhanced number of photoelectrons detected, consistent with

the simulation predictions and cosmic testing results. Specifically, configuration (2) of

the pion detector confirmed a notable increase in signal detection efficiency, verifying

the design optimizations. The beam tests confirmed the accuracy of the simulation

models, enhancing trust in the pion detector’s capability to correct signals in the

real-world experimental setting effectively.

These findings underscore the pion detector system’s successful development,

yielding promising results and substantiating its utility as an effective background

175



detector. Its contribution advances the MOLLER experiment’s signal correction pro-

cess, marking a notable step forward in pursuing high-precision measurements in

particle physics.

6.1.2 Bayesian Analysis Methodology

The foundational concepts of Bayesian analysis are introduced in Chapter 5 and

contrasted in Section 5.1 with the frequentist approach, which traditionally defines

probability in terms of repeated measurements and long-term frequencies of events. In

contrast, Bayesian statistics interprets probability as a measure of belief or certainty

regarding the occurrence of an event or the truth of a hypothesis. This fundamental

difference alters how probabilities are used in statistical analysis. Bayesian analysis

uses probability as a universal language for describing the likelihood of hypotheses

and making decisions under uncertainty. It allows for direct probabilistic inference,

providing more informed estimates and predictions. This shift from a frequentist to

a Bayesian approach represents a conceptual divergence that significantly impacts

methods in statistical data analysis.

Bayes’ theorem, as detailed in Section 5.2, forms the core of Bayesian analysis,

linking prior distributions and likelihood functions to update beliefs in light of new

evidence, resulting in the posterior distribution. The theorem transforms subjective

beliefs (priors) and objective data (likelihood) into a combined model (posterior),

which is then used for statistical inference and decision-making. The complexity of

the posterior distribution, often high-dimensional and analytically intractable, ne-

cessitates advanced computational techniques for effective model fitting. Markov

Chain Monte Carlo (MCMC) methods are particularly highlighted for their ability to

sample from complex posterior distributions, thus enabling practical Bayesian infer-

ence. PyStan utilizes Hamiltonian Monte Carlo (HMC) and the No U-Turn Sampler

(NUTS), each aiding in efficient and effective sampling and model fitting.

Section 5.3 explores the application of Bayesian analysis to enhance the precision

of extracted quantities in the Qweak experiment. This section compares the results of

Bayesian analysis with those from a previously employed Monte Carlo minimization
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method. Two main analytical approaches are discussed: the Many-Worlds Monte

Carlo Minimization Method and the Bayesian Analysis Method. The former uses

randomized inputs based on Gaussian distributions of measured values to compute

asymmetries and minimize deviations from these values, providing a set of possible

values for each asymmetry component. In contrast, the Bayesian analysis method

utilizes a model incorporating prior knowledge and measured data to update be-

liefs about parameters through the posterior distribution. This method is noted for

potentially providing more precise estimates and smaller uncertainties due to its sys-

tematic incorporation of data and prior information. Comparative analysis indicates

that Bayesian analysis generally yields closer fits to the measured data and more

constrained uncertainty estimates. This comparison is visually supported by plots in

Figure 5.4, which compare fitted values against actual measurements across various

detectors. The robustness of Bayesian parameter estimation is emphasized compared

to the Monte Carlo method.

Section 5.4 of the chapter explores enhancing the precision of extracted quanti-

ties through Bayesian analysis in the MOLLER experiment, following the methods

used in the Qweak experiment. This section addresses the need to adapt and re-

fine the Bayesian framework to meet the specific challenges and configurations of the

MOLLER experiment. It involves a detailed comparison of the underlying assump-

tions, experimental setups, and analytical methodologies between the two experi-

ments to lay a foundation for a comprehensive evaluation of the inputs, parameters,

and models used in Bayesian analysis.

Key differences between the Qweak and MOLLER experiments in applying Bayesian

analysis include experimental geometries, the types of data used (mock asymmetry

values in MOLLER versus measured asymmetry values in Qweak), variations in po-

larization angles, and approaches to spin variation. In this context, Bayesian analysis

generates mock asymmetry data based on simulated true asymmetry values and asso-

ciated uncertainties. These mock data are crucial for validating the Bayesian model

under simulated conditions before applying it to experimental data. The analysis

then uses these mock asymmetries to refine the model and extract precise asymmetry

components, demonstrating the method’s efficacy in providing detailed insights into
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experimental outcomes. Figures 5.9 to 5.12 illustrate various comparisons between

true, mock, and fitted asymmetry values for both the pion and main detectors in

the MOLLER experiment, using Bayesian analysis. These figures provide a compre-

hensive visual and quantitative analysis of the Bayesian model’s application in the

MOLLER experiment, illustrating its capacity to handle complex datasets and its

effectiveness in achieving precise measurements under simulated experimental condi-

tions.

Overall, Section 5.4 thoroughly explores the application of Bayesian analysis in

a high-precision experimental context, showcasing how methodological refinements

and careful consideration of experimental details contribute to the advancement of

scientific understanding in particle physics experiments.

6.2 Future Directions

6.2.1 Future Directions of the Pion Detector System Devel-

opment

A primary focus in the future direction of the pion detector system for the

MOLLER experiment will be replacing the current PMT base with a switchable

version. This upgrade is crucial as it allows the system to transition between inte-

grating and event data-taking modes. Upon integrating the switchable PMT base,

a comprehensive reevaluation of the system using actual experimental components

is proposed. This includes employing the specified Lucite dimensions, the selected

PMT models, and the finalized light-tight enclosure box in practical tests. To validate

their performance, the intent is to conduct rigorous cosmic and beam tests with these

fundamental components. The results of these tests will be compared not only with

the outcomes from previous simulations but also with data from cosmic and beam

testing. This iterative testing and comparison process is designed to enhance the

system’s accuracy and efficiency, ensuring that the pion detector system fully meets

the high-precision requirements of the MOLLER experiment.

Subsequently, following the implementation of the MOLLER experiment and the
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collection of measurements, data analysis of the actual data would be an important

part. The results can be compared with the results from the simulations, cosmic tests

and beam testing, and also the Bayesian analysis can be applied to the measured

values instead of the mock values.

6.2.2 Future Directions of Bayesian Analysis

Future studies in Bayesian analysis should consider adjusting the assumptions

used for generating mock data in the MOLLER experiment. Integrating elastic and

inelastic scattering processes into the existing Moller and pion generators can gener-

ate more realistic mock data. This allows the Bayesian analysis to accommodate a

broader range of scattering events and provide a more accurate reflection of expected

experimental outcomes.

Additionally, modifications to the experimental setup, such as incorporating the

effects of all six rings of the main detector and the showermax detector, could enhance

the model’s accuracy. By aggregating the asymmetry values from all modules of the

main detectors and the showermax detector and incorporating these into the Bayesian

model, the analysis would capture a more comprehensive picture of the scattering

events.

Exploring a variety of polarization angles could further refine the analysis. Current

models utilize limited polarization angles; however, experimenting with a broader

range of angles could uncover impacts on the asymmetry measurements not previously

accounted for, potentially revealing new insights into the spin-dependent interactions

at play.

These enhancements will not only improve the accuracy of the Bayesian models

but also expand our understanding of the underlying physical processes in PVES ex-

periments, aiming to refine the predictive capabilities of our models to ensure they

are robust and reflective of the complex dynamics encountered in high-precision ex-

perimental physics.
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