Signal Extraction Overview

Kent Paschke
University of Virginia
July 30, 2025

Charge item 14: simulation, readiness for analysis

Extracting Apv from the Measured Flux

map E-θ correlation for ee scattering to detector

Integration of analog detector current

$$\frac{\mathbf{A}_{\mathbf{pair}}}{2F} + \Delta A$$

$$\left(A_{cxpt}\right)_{i} = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_{i} - \sum_{j} \left(\alpha_{j} \left(\Delta X_{j}\right)_{i}\right)$$

Corrections to measured asymmetry, variable per each measurement and essential for extracting statistical precision

 $\sigma_{pair} = \sqrt{\frac{1}{N}} + noise$

$$\sigma_{A_{expt}} = \frac{\sigma_{pair}}{\sqrt{N_{pair}}}$$

$$A_{PV} = \frac{1}{P_b} \frac{A_{expt} - A_T - A_{NL} - \sum_i f_i A_i}{\sum (1 - f_i)}$$

- Backgrounds (asymmetry and dilution)

Noise sources in A_{expt}

$$\left(A_{cxpt}\right)_{i} = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_{i} - \sum_{i} \left(\boldsymbol{\alpha}_{i} \left(\Delta X_{j}\right)_{i}\right)$$

$$\sigma_{pair} = \sqrt{\frac{1}{N}} + noise$$

$$\sigma_{A_{expt}} = \frac{\sigma_{pair}}{\sqrt{N_{pair}}}$$

Ultimate Contributions to σ_{pair} - "Pair width"

Parameter	Random Noise (65 μ A)
Statistical width (0.5 ms)	\sim 82 ppm
Target Density Fluctuation	30 ppm
Beam Intensity Resolution	10 ppm
Beam Position Noise	7 ppm
Detector Resolution (25%)	21 ppm (3.1%)
Electronics noise	10 ppm
Measured Width (σ_{pair})	91 ppm

- •Statistics: ~145 GHz. About 1/3000 of incident beam electrons create a MOLLER signal in our Ring 5 detector (Kumar)
- Target density instability: changes in luminosity due to target. Very stable target plus rapid relative measurements control this noise
- Beam intensity: high-resolution measurement of incident beam flux (M. Pitt)
- •Beam position: high resolution measurement of beam position variations and precise calibration of the sensitivity
- Detector resolution: rms width of detector response adds to statistical variation in signal (M. Gericke)
- Electronics noise: will also contribute

Calibrating Corrections to Extract Apv

Anticipated Uncertainty in Apv

Error Source	Fractional Error (%)		
	Run 1	Ultimate	
Statistical	11.4	2.1	
Absolute Norm. of the Kinematic Factor	3	0.5	
Beam (second moment)	2	0.4	
Beam polarization	1	0.4	
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	2	0.4	
Beam (position, angle, energy)	2	0.4	
Beam (intensity)	1	0.3	
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.6	0.3	
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	1.5	0.3	
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.3	0.15	
Transverse polarization	2	0.2	
Neutral background (soft photons, neutrons)	0.5	0.1	
Linearity	0.1	0.1	
Total systematic	5.5	1.1	

Acceptance averaging

$$\left(A_{cxpt}\right)_{i} = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_{i} - \sum_{j} \left(\alpha_{j} \left(\Delta X_{j}\right)_{i}\right)$$

$$A_{PV} = \frac{1}{P_b} \frac{A_{expt} - A_T - A_{NL} - \sum_i f_i A_i}{\sum_i (1 - f_i)}$$

Target
High power, risk for source of random noise

Bypass jet at beam in window, 6 mm diameter

- Design informed by Qweak experience
- CFD simulations (S. Covrig Dusa)
- Jet at each window to cool dominant heat surface
- Qweak data shows noise dominated by lower frequencies, results reproduced in time-dependent CFD simulations
- CFD demonstrates design meets requirements

Requirements:

- $\Delta \rho / \rho$ (%) < 1%
- σ_b < 30 ppm

CFD simulation result:

- $\Delta \rho / \rho$ (%) ~ 0.85%
- $\sigma_{\rm b}$ < 13 ppm

nipple

Beam Position Stability and HCBA Correction

Must control noise and also possible systematic false asymmetry from average difference

Correct for variations in beam intensity, position, angle, and energy fluctuations:

$$\left(A_{cxpt}\right)_{i} = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_{i} - \sum_{j} \left(\alpha_{j} \left(\Delta X_{j}\right)_{i}\right)$$

Random Noise:

Monitor resolution
Calibration imprecision

Parameter	Noise (65 µA)
Statistical Width	~82 ppm
Beam Intensity Resolution	10 ppm
Beam Position Noise	7 ppm

Systematic Correction:

Small HCBA, robust corrections

Error Source	Fractional Error (%)
Beam (position, angle, energy)	0.4
Beam (intensity)	0.3

Keep Helicity-Correlated Beam Asymmetries small

- Special techniques with the polarized source laser optics
- Beam transport configuration to avoid exacerbating differences
- "slow reversals" that flip the sign of beam asymmetries
- feedback

Beam	Assumed	Accuracy of	Required 1 kHz	Required cumulative	Systematic
Property	Sensitivity	Correction	random fluctuations	helicity-correlation	contribution
Intensity	1 ppb / ppb	~1%	< 1000 ppm	< 10 ppb	$\sim 0.1~\mathrm{ppb}$
Energy	-0.7 ppb / ppb	~5%	< 108 ppm	$< 1.4 \mathrm{~ppb}$	$\sim 0.05~\mathrm{ppb}$
Position	1.7 ppb / nm	~5%	$< 47~\mu\mathrm{m}$	< 0.6 nm	$\sim 0.05~\mathrm{ppb}$
Angle	8.5 ppb / nrad	~5%	$<4.7~\mu{ m rad}$	< 0.12 nrad	$\sim 0.05~\mathrm{ppb}$
Spot Size	0.012 ppb / ppm	-	-	$< 10 \mathrm{ppm}$	$\sim 0.1~\mathrm{ppb}$

Beam correction analysis

Two calibration techniques

- beam modulation for calibration
- linear regression

Combined, for precision and accuracy in the PREX-2 analysis

- Removed >90% noise
- 4% precision on total correction

Beam Position Corrections

Multivariate Regression:

$$\chi^2 = \sum_{i} \left(A_{raw} - \sum_{i} \beta_i \Delta M_i \right)^2, \quad \frac{\partial \chi^2}{\partial \beta_i} = 0$$

Rapid calculation, high precision, but potential bias through correlated instrumental noise

Driven Modulation:

Driven modulation of beam, long update period and reduced precision, but insensitive to electronic noise

Regression constrained by beam modulation:

- Rapid calculation, high precision, but beam modulation removes bias
- Developed and successfully used during challenging PREX-2 measurement
- Multiple techniques used to calibrate and cross-check correction factors

Control of HCBA

(C. Palatchi)

Source configuration

- Large body of work with polarized source and injector
- Performance, characterization and alignment of polarized source components and injector beam optics

Adiabatic Damping

Good beam match keeps variation small

Slow Reversals

- Includes laser optics reversals (e.g. IHWP)
- Net factor ~10 suppression of beam asymmetries

Injector Spin Manipulation

- Solenoids + 2 Wien rotations
- ~80 reversals during run phase 2&3 (weekly)

- Beam energy ($\Delta E^{\sim}100 \text{ MeV}$)
- ~few reversals during run phases 2 and 3

original random orientation Solenoid Wien Solenoid Wien Solenoid Wien Solenoid Wien Solenoid Wien Solenoid Wien

Path to meeting MOLLER goals

	Source	Adiabatic Damping	Slow Reversals	Feedback	
Intensity	<10 ppm (injector)	-	~10x	100x	
Position/	~20 nm (injector)	~100x (150x max)	~10x (IHWP, g-2, ISM)	~10x, control jitter	
angle	(Past: 30-200 nm)	Past: 5-30x (95x max)	Past: ~10x IHWP, ISM	Past: ~10x, not often used	
Cnot Cino	(source) Δσ/σ <10 ⁻⁵	10x overabilisht	10v (IUMD ~ 0 ICM)		
Spot Size	Past: Δσ/σ <10 ⁻⁴	~10x synch light	~10x (IHWP, g-2, ISM)		

Aggregation and slow reversals

		~20PAC days	~40PAC days	344PAC days	14PAC days
		PREX-2	CREX	MOLLER	Cumulative Helicity
		(achieved)	(achieved)	(required)	Correlation (Run1)
Aq	Intensity asymmetry	25 ppb	−88 ppb	10 ppb	< 40 ppb
ΔΕ/Ε	Energy asymmetry	$0.8 \pm 1~\mathrm{ppb}$	$0.1 \pm 1.0 \mathrm{ppb}$	< 1.4 ppb	< 6 ppb
Dx	position differences	$2.2\pm4~\mathrm{nm}$	-5.2 ± 3.6 nm	0.6 nm	$< 4 \times 10^{-9} \text{ m}$
Δθ	angle differences	$< 0.6 \pm 0.6$ nrad	-0.26 ± 0.16 nrad	0.12 nrad	$< 0.5 \times 10^{-9}$ radian
$A_{\sigma} \big[$	size asymmetry (quoted)	$< 3 \times 10^{-5}$	$< 3 \times 10^{-5}$	$< 10^{-5}$	$< 10^{-5}$
-					

Did we achieve HCBA goals? We can't tell without aggregating to achieve precision

- Aggregated results must be tested for statistical consistency, unexpected correlations, etc.
- Systematic tests are more precise with longer integrate times, but then reduce the number if independent periods to compare...
- Studies with aggregated data are an important part of the MOLLER data evaluation (S. Park)

Transverse Polarization Control

Transverse beam polarization has a left/right analyzing power

$$A_{PV} = \frac{1}{P_b} \frac{A_{expt} - A_T - A_{NL} - \sum_i f_i A_i}{\sum (1 - f_i)}$$

- Well known (both measured and calculated) for ee scattering, large in magnitude relative to APV
- · Cancels over azimuthal acceptance, but must be controlled to avoid contributions from imperfect cancellation
- Zero at 90° center of mass, so detector segmentation will have a clear signature for non-zero transverse polarization

Average transverse asymmetry

- Initial beam setup ~ 1-2 degrees
- Unique signature of transverse beam polarization
- •50 ppb error on A_T*P_b in 4 hours: 1 degree precision
- Over entire run: feedback with precession angle will hold transverse polarization small (<<1 degree)

Run Phase 1:

- A_T measurement
- Feedback technique tested

Run Phases 2 and 3:

Routine feedback

Shielding and Collimation

Irreducible background: radiated and/or inelastic ep or aluminum scattering, pions

Reducible background: rescattering from photons (2-bounce design), beam line, or radiative tail e± from target

Hygiene on reducible background sources is a major focus Relatively small "source" terms for re-scattering could create difficult-to-model backgrounds

Simulation

remoll - GEANT 4 simulation package, gdml geometry markup 2013

- Developed in 2013
- •Generators:
 - Moller, ep elastic, inelastic, Al elastic and inelastic
 - Electron "beam" generator
 - Secondary simulation (generating from input file of G4 hits)
- Detailed geometry, kept up to date with final design

Used in a wide range of studies: Design, acceptance, rates, reducible and irreducible backgrounds, ferrous materials, beam trajectory sensitivity, radiation dose rates, power deposition, spectrometer optics, light collection. Will be used to generate mock data for counting analysis design

fluka - Used for activation studies

Examination of Reducible Backgrounds with remoll

- 1) 2-D background heatmap
- 2) all background sources, showing leading sources
- 3) track angle vs radius at Collar 1
- 4) 6a vs 6b coverage
- Counting mode studies can diagnose leading sources (collars 1 and 2, collimator 6a)
- Beamline rescattering can be studied with blocked collimator
- Auxiliary detectors (LAMS, SAMS, DBMs), Ring 1 will help monitor for unexpected background sources.

Ferrous Materials

Double-spin ee or γe scattering from ferrous material can have large asymmetry.

Goal:
$$A_f < 10^{-11}$$

Estimate false asymmetry A_f as

$$A_f = f_r P_e P_s A_n$$

 f_r rate fraction of process

 P_e incident electron polarization

 P_s material electron polarization

 A_n analyzing power

Conservative estimates: $A_n \sim 10^{-3}$, $P_e \sim 0.3 - 1$

 P_s in ~1G ambient field:

- mild steel: $\sim 10^{-2}$
- Stainless steel: $\sim 10^{-5} 10^{-7}$
- Inconel 625: $\sim 10^{-8}$
- Aluminum (paramagnetic): $< 10^{-9}$

$\rightarrow f_r$ bound of 10-2-10-9 corresponds to 10-6-10-13 absolute rate

Simulations in G4, using ad hoc "biasing" for rare event estimation

Examples: Bellows, pivot and HRS structure, coil support hardware in high fields, rebar, support frames, motors and power supplies, vacuum and water connections

Resulting in: new shielding, materials specifications, and other design modifications to control technical risk

Irreducible Backgrounds and Deconvolution

Radial distributions at the front of the detector array

- e-e scattering
- elastic e-p scattering
- inelastic e-p scattering
- elastic e-Al scattering
- inelastic e-Al scattering
- Al quasi-elastic scattering

- 16 different tile asymmetries
- "Pre-subtract" Al and pion asymmetry contributions
- Simultaneous fit to 16 measurements with different contributions of e-e, e-p elastic, ep-inelastic
- Extract the "weak charge" for e-e, e-p elastic and inelastic e-p for 3 different W ranges

JNIVERSITY

VIRGINIA

PV Electron-Proton Inelastic Scattering

electroweak neutral current structure functions

Deep inelastic scattering
$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

At high Q², one can use quark pdf's and standard model couplings. At forward angles, the prediction is $A_{PV}/Q^2 \sim 8.5 \times 10^{-5}$. However, for very low Q², one needs a model as a function of W.

 E_{beam} = 11 GeV, $6 < \theta_{lab} < 20$ mrad, E' = 3 to 8 GeV MOLLER

kinematics: $Q^2 \sim 0.001 - 0.02 \text{ GeV}^2$, W² from 1 to 20 GeV²

Diffractive Regime (VMD or Pomeron Physics)

Assumption: $A_{PV}/Q^2 \sim F(W)$ is constant in 3 W regions

Mock Fit Extraction with Monte Carlo Trial Data Fit

Processes	Expected A (ppb)	σ_A (ppb)	$\frac{\sigma_A}{ A }$ (%)
Moller	-35.20	0.64	1.8
ep-elastic	-19.67	1.82	9.2
ep-inelastic (1)	-439.94	80.6	18.3
ep-inelastic (2)	-433.96	38.3	8.8
ep-inelastic (3)	-384.59	91.5	23.8
eAl-elastic	297.27	83.01	27.9

extracted precision close to statistical power for ee, factor <2 for backgrounds

Corrections for Ring-5 Tiles after Fit Extraction

Process	Correction	Systematic
	(%)	Error (%)
e-p elastic	1.14	0.08
e-p inelastic ($W < 1.4 \text{ GeV}$)	-1.34	0.22
e-p inelastic (1.4 $< W <$ 2.5 GeV)	-1.54	0.11
e-p inelastic ($W>2.5~{\rm GeV}$)	-1.66	0.35
e-Al elastic	0.87	0.09
e-Al other	< 0.10	< 0.10

• precision on backgrounds sufficient for ee result

Pion Background

Pion background (dominantly from real and virtual photoproduction from proton)

Estimate f_{π} ~ 0.13% with A_{PV}^{π} ~ 500 ppb Need to determine $f_{\pi}A_{PV}^{\pi}$ to ~20% relative precision

Range out electrons with Pb absorber - acrylic Cerenkov detectors

- Measure A^π_{PV} with 100 MHz total pion rate over full azimuth in integration mode
- Measure f_{π} in counting mode, using information from pion detectors as well as tracking, shower-max, and thin quartz MD

Hyperon generator (with rates based on CLAS data) used to estimate expected pion asymmetries

Polarimetry

- Two independent measurements which can be cross-checked
- Continuous monitoring during production (protects against drifts, precession...)
- Statistical power to facilitate cross-normalization (get to systematics limit in about 1 hour)

Compton

(D. Gaskell)

- continuous measurement with high precision
- state-of-the-art: 0.4% (CREX at 2 GeV) doi.org/10.1103/PhysRevC.109.024323
- Independent electron/photon analyses, each expected to reach 0.4%
- Electron Detector to be built (Diamond µstrips and/or HVMAPS)
- DAQ upgrade

Møller

(D. Jones)

- 0.5% instrumental precision for Hall C polarimeter
- Low-current, invasive measurement
- Cross-check with independent uncertainties
- MOLLER project: Collimator, GEM trackers

Precision electron beam polarimetry for next generation nuclear physics experiments K. Aulenbacher, E. Chudakov, **D. Gaskell**, J. Grames, and K. Paschke Intl J of Mod Phys E Vol. 27, No. 7 (2018) 1830004

Precision Møller polarimetry for PREX-2 and CREX, D.E.King et al. NIM A 1045 (2023) 167506

Accurate determination of the electron spin polarization in magnetized iron and nickel foils for Møller polarimetry, D.C. Jones et al., NIM A 1043 (2022) 167444

Normalize Kinematics

$$A_{PV} = mE \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta}{(3+\cos^2\theta)^2} Q_W^e$$

Standard model parity-violation analyzing power / weak charge, averaged over acceptance

Simulation of acceptance must be benchmarked and checked by tracking measurements

- •GEM tracking of event rate from LH2 target
- Demonstrate rate distribution as described by simulation
- Benchmark optics with sieve collimators
- •Measure detector position dependent response function (light per hit)

Anticipated Publication

Run Phase 1

- Spectrometer optics, acceptance, alignment
- First look at backgrounds
- Beam monitor resolution
- Beam correction tools
- Beam quality (asymmetry and halo)
- Polarimetry precision

Result: precision of SLAC-E158 on APV

Run	1 kHz	PAC Days	Stat E	Error	Efficiency	Calenda	ar Weeks
Period	Width	(prod)	$\sigma(A_{meas})$	$\sigma(A_{ m PV})$		(prod)	(calib)
I	101	14	2.96 ppm	11.4%	40%	5	6
II	96	95	1.08 ppm	4.2%	50%	27	3
III	91	235	0.65 ppm	2.5%	60%	56	4
Total		344	0.55	2.1		88	13

Well developed analysis techniques and experienced collaboration.

Plan to publish ee A_T result and A_{PV} result within about one year of finishing Run 1.

Previous experiments released results in about a year, published in about 1.5 years

This result should be quick to turn around, ~1 day of data, relatively forgiving systematics

Also: ep inelastic A_T

"documented track record"

	running	released	published
E158	Sept 2003	Dec 2004	Apr 2005
PREX-2	ended Aug 2019	Oct 2020	Feb 2021
CREX	ended Sept 2020	Oct 2021	May 2022

Summary

- •The collaboration is experienced and has developed and demonstrated effective analysis techniques during recent measurements
- •The experimental design has benefited from technologies developed during previous experiments
- Detailed simulation results will assist with analysis development and interpretation
- •Run 1 has less demanding systematic goals and a relatively short data collection period. Its analysis will be crucial for guiding future data collection
- The collaboration expects to publish A_T and A_{PV} results within a year of Run 1

Run	1 kHz	PAC Days	Stat Error		Efficiency	Calendar Weeks	
Period	Width	(prod)	$\sigma(A_{meas})$	$\sigma(A_{ m PV})$		(prod)	(calib)
I	101	14	2.96 ppm	11.4%	40%	5	6
II	96	95	1.08 ppm	4.2%	50%	27	3
III	91	235	0.65 ppm	2.5%	60%	56	4
Total		344	0.55	2.1		88	13

Error Source	Fractional Error (%)		
	Run 1	Ultimate	
Statistical	11.4	2.1	
Absolute Norm. of the Kinematic Factor	3	0.5	
Beam (second moment)	2	0.4	
Beam polarization	1	0.4	
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	2	0.4	
Beam (position, angle, energy)	2	0.4	
Beam (intensity)	1 1	0.3	
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.6	0.3	
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	1.5	0.3	
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.3	0.15	
Transverse polarization	2	0.2	
Neutral background (soft photons, neutrons)	0.5	0.1	
Linearity	0.1	0.1	
Total systematic	5.5	1.1	

Appendix

Phased Approach to Achieving Ultimate Precision

Run	1 kHz	PAC Days	Stat Error		Efficiency	Calendar Weeks	
Period	Width	(prod)	$\sigma(A_{meas})$	$\sigma(A_{ m PV})$		(prod)	(calib)
I	101	14	2.96 ppm	11.4%	40%	5	6
II	96	95	1.08 ppm	4.2%	50%	27	3
III	91	235	0.65 ppm	2.5%	60%	56	4
Total		344	0.55	2.1		88	13

Run Phase 1

- Spectrometer optics, acceptance, alignment
- First look at backgrounds
- Beam monitor resolution
- Beam correction tools
- Beam quality (asymmetry and halo)
- Polarimetry precision

Result: precision of SLAC-E158

- Run Phase 2 · statistical behavior of measured asymmetries
 - quality of "slow" reversals (Wien, g-2)
 - precision on background, normalization, beam corrections, polarization

Result: 2.5x beyond SLAC-E158, $\delta(\sin^2\theta_W)=0.00044$ (stat), 0.00047 (stat+syst)

Run Phase 3

 ultimate precision, ultimate systematic uncertainty Result: $\delta(\sin^2\theta_W)=0.00024$ (stat), 0.00028 (stat+syst)

Progressively improve statistical power

Run Period	I	П	III
1 kHz Width Goal	101 ppm	96 ppm	91ppm
Width over counting statistics	23%	17%	11%
Excess noise over counting statistics	59 ppm	50 ppm	40 ppm
Allowance over ultimate goal	44 ppm	31 ppm	_

and systematic control

Error Source	Fractional Error (%)		
	Run 1	Ultimate	
Statistical	11.4	2.1	
Absolute Norm. of the Kinematic Factor	3	0.5	
Beam (second moment)	2	0.4	
Beam polarization	1	0.4	
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	2	0.4	
Beam (position, angle, energy)	2	0.4	
Beam (intensity)	1	0.3	
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.6	0.3	
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	1.5	0.3	
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.3	0.15	
Transverse polarization	2	0.2	
Neutral background (soft photons, neutrons)	0.5	0.1	
Linearity	0.1	0.1	
Total systematic	5.5	1.1	

The Box Diagram Connection

Radiative corrections to the theoretical prediction of the weak charge of the proton

There is no data on $F_1^{\gamma Z}$ in Region II! MOLLER will make the first ever measurement!

compared to PVDIS measurements

Table 1: Nominal parameters for the conceptual design of the MOLLER experimental apparatus.

Parameter	Value		
E [GeV]	≈ 11.0		
E' [GeV]	2.0 - 9.0		
$ heta_{ m CM}$	50°-130°		
$ heta_{ m lab}$	0.26°-1.2°		
$\langle Q^2 angle \ [{ m GeV^2}]$	0.0058		
Maximum Current [μA]	70		
Target Length (cm)	125		
ρ_{tgt} [g/cm ³] (T= 20K, P = 35 psia)	0.0715		
Max. Luminosity [cm ⁻² sec ⁻¹]	$2.4 \cdot 10^{39}$		
σ [μ barn]	≈ 60		
Møller Rate @ 65 μA [GHz]	≈ 134		
Statistical Width(1.92 kHz flip) [ppm/pair]	≈ 91		
Target Raster Size [mm × mm]	5×5		
Production running time	344 PAC-days = 8256 hours		
ΔA_{raw} [ppb]	≈ 0.54		
Background Fraction	≈ 0.10		
$P_{ m B}$	$\approx 90\%$		
$\langle A_{PV} angle$ [ppb]	pprox 32		
$\Delta A_{stat}/\langle A_{expt} angle$	2.1%		
$\delta(\sin^2 heta_W)_{stat}$	0.00023		

Emittance Growth and Spot Size

Spot-size helicity dependence in hall diluted by synchrotron emittance growth contribution

helicity dependent spot size in injector

$$\sigma_{(inj)R,L}$$

Spot-size "noise" from synchrotron

$$\sigma_{synch}$$

incoherent growth, so width is quadrature sum

$$\sigma_{R,L}^2 = \sigma_{synch}^2 + \sigma_{(inj)R,L}^2$$

Background Hygiene: design for "2-bounce"

Avoid "1-bounce" line-of-sight to target

- Python code
 - Target, collar, collimators, beam shields, detector (600, 690-1300 mm)
 - Uses straight lines to simulate an isotropic source (with random position, angle)
 - -Surfaces that "see" the target (red) become new sources
 - Make it so detectors see no red surfaces
- Tolerance study
 - move the collimators and/or coils by +/-1 mm w/o seeing green on the detectors

Remoll Generator

- \clubsuit Generates e', K+, and Y (Λ or Σ)
 - Fixed 11 GeV e beam (needs updated to a realistic beam profile).
 - Thrown flat in θ_e , ϕ_e , E_e , $\theta^{CM}_{K'}$ and $\phi^{CM}_{K'}$
- Rates calculated using the CLAS data done at the analysis step after remoll simulation.
 - Allows for changes to be made to the rates without needing to generate new MC samples.

Published CLAS Data (Q²=1.8 GeV²) example

University of Massachusetts Amherst

Page 7

FIG. 13: (Color online) Structure functions σ_U , σ_{LT} , σ_{TT} , and $\sigma_{LT'}$ (in nb/sr) for $K^+\Lambda$ production vs. $\cos\theta_K^*$ at 5.499 GeV for $Q^2=1.80$ GeV and W from 2.125 to 2.575 GeV. The error bars represent the statistical uncertainties only. The curves are defined in the caption of Fig. 12.

