Pion Detectors – ERR 2 July 2025

Personnel

Pion background determination

System overview

Prototyping

Summary & To Do

David Armstrong

William & Mary

July 30 2025

Personnel

- · Wouter Deconinck, U. Manitoba
- Elham Gorgannajed, U. Manitoba
- Jie Pan, U. Manitoba
- David Armstrong, W&M
- Kate Evans, W&M
- Tasneem Raza, W&M
- Simona Malace, JLab

Pion Detectors – Background evaluation and subtraction

Committee questions:

"How is the pion background evaluated and subtracted?"

"Does the pion detector meet the needs to implement the pion background subtraction?"

Answer: see next 6 slides

Note: the pion background for the Moller signal (Ring 5) is determined independently and subtracted separately from the multi-ring Moller/e-p/inelastic deconvolution procedure

Pion Background

- Need to determine, for Ring 5,
 - i) asymmetry: A_{PV}^{π}
 - $f^{\pi} = \frac{R^{\pi}}{R^{\pi} + R^{e}}$
- Estimate: $f^{\pi} \sim 0.13\%$ with $A^{\pi}_{PV} \sim 500$ ppb Need to determine $f^{\pi}A^{\pi}_{PV}$ to 20% relative precision
- Range out majority of electrons with Pb absorber (donut)
- A_{PV}^{π} measurement from 20 MHz total pion rate over full azimuth
 - during main asymmetry data-taking
 - moderately radiation-hard integrating detectors
 - ∴ Acrylic Cerenkov detectors

Pion Detectors: Integrating Mode data-taking

- 1 GeV forward-angle pions from 3 GeV beam have huge parity-conserving transverse asymmetries $(\sim 20 \text{ ppm}) A_T^{\pi} \text{ (Qweak)}^*$ \therefore Full azimuthal coverage
- Measure separately in open (5-8 GeV), closed (3-5 GeV) and transitions sectors to get handle on pion energy dependence of A_{PV}^{π}
 - ∴ 28-fold segmentation (matches ShowerMax segmentation)
- Pion flux:

GEANT 4/Wiser model: $2.0 \times 10^{-5} \frac{\text{GHz}}{\mu A}$ /detector (over 28 detectors) = 24 MHz total at 65 μA

- ~0.8 MHz/detector (28 detectors)
 - δA_{π} = 0.83 ppm/day → 100 ppb (20% relative to expected asymmetry) in 60 days
 - Use same ADCs as main detectors
 - Run continuously during main asymmetry measurement
 - Want > 20 PEs/pion, so asymmetry width not significantly broadened by detector resolution
 Prototype: 65 PEs/per cosmic muon

Pion Detectors – Integrating Mode signal

- GEANT 4 simulation indicates π/e ratio of photoelectrons in pion detector = 1.07. Why?
 - Copious flux of few-MeV e^-, e^+ and γ 's from tail of ranged-out Moller shower, a few of which each make 1 or 2 PEs
 - Relatively smaller flux of π^-/μ^- , each of which generates 60 PEs*
- Need to correct measured asymmetry from pion detectors for Moller asymmetry to get A^π_{PV}
- Check π/e ratio of photoelectrons in pion detector with counting mode data

Pion Flux measurement

- Determine f^{π} in thin quartz detectors in Counting Mode:
 - Trigger on pion detector signal.
 - see MIP in Shower-max:

Software requirement: (Tracking GEMs)·(Tracking Scints)·(thin quartz)·(ShowerMax MIP)·(Pion Detector)

- GEANT 4 simulations
 - + MLL (Random Forest Classifier)

correct identification score: 95.1%

Pion Flux measurement – Blocker enhancement

- Additional mode to verify response of Pion Detector and Shower-max to pions:
 - insert Blocker collimator (20 X₀ W/Cu)
 - Suppress π^- flux at main detectors by $\times 0.55$
 - Suppress e^- flux at main detectors by $\times 10^{-4}$
- Shower-max signal: roughly equal mix of π^-/μ^- and e^-
- Pion Detector: essentially pure π^-/μ^-
- Not yet studied in detail in simulation

Pion Detectors – Radiation tolerance

Committee question: "Has the radiation tolerance of the pion detectors been demonstrated over the full experimental run?"

Answer: The simulated total dose (integrated over full run) to pion detectors 200 kRad (remember – detectors well-shielded inside pion donut)

Literature: UVT acrylic optical properties good to >1 MRad.

HAPPEX-I both HAPPEX-3 used the same pair of acrylic detectors, no degradation seen in light output at end of HAPPEX-3.

Pion Detector: Fair sampling of pion kinematics?

Thrown Kinematics (Wiser model)

Kinematics seen by Ring 5 & ShowerMax

Kinematics seen by Pion Detectors

Pion Detector – system overview

- 28 identical acrylic detectors (7 cm deep, 21 cm wide, 1" thick)
- Read out via 1" diameter directly-coupled PMT at rear (no lightguide)
- Encased in Pb donut

Pion Detector

- 45 X₀ in direction of scattered Moller electrons
- π /e ratio of photoelectrons in pion detector = 107% (design goal: > 50%)
- simulated light yield: > 50 pe's/pion
- loose tolerance (±5 mm) on location of acrylic
- Material selected: Eljen UVT acrylic
- Benchmarked GEANT4 optical response with electrons at MAMI/Mainz: Nov. '22
- Tested optical response using cosmic muons at Test Lab exceeded simulated light yield (see slides 16 and 17)

Pion Detectors – Acrylic

Eljen PMMA UVT acrylic Dimensions: 21 cm x 2.54 cm x 7 cm. Diamond-milled edges. As-cast faces.

Optical transmission verified (Carl Zorn). Matches what we have been using in our simulations.

Pion Detectors – Light Tight housing

3D-printed light-tight housing design
- Elham Gorganazed
Prototyped at U. Manitoba

Pion Detectors – PMTs

The ET 9125BQ

29 mm (1.13") diameter, blue-green sensitive bialkali photocathode

11 high gain, high stability, SbCs dynodes of linear focused design.
Photocathode active diameter: 1"

Prototype PMT with temporary HV divider (initial testing)

Pion Detector – Prototype testing with cosmics

Pion detector prototype

- Acrylic and PMT: as designed
- not final detector enclosure
- not final PMT base (commercial base)

- 4 scintillator paddles stand at JLab
- Detector read out via fADC250, VTP trigger (same as for counting mode in experiment)
 Pion Detectors ERR 2

Sample number

Pion Detector – Prototype: cosmics vs. simulation; status

(a.u.)

Configuration (2)

Pion Detectors ERR¹2º

- Acrylic, PMTs, base sockets: all procured
- PMT Q/A testing: about to start
- Prototyped 3D-printed enclosure
- Prototyped PMT base/HV divider, fast amplifier - testing underway
- All assembled detectors to be cosmic tested

Acrylic modules

Prototype base/divider

Enteries Mean

100000

56.43

Pion Detectors – PMT Base & amplifier

Unlike Main Detectors, ShowerMax, and other auxiliary detectors, we don't need to switch the number of dynode stages read between integrating mode & counting mode operation – simply change the HV. Use 9 stages.

Still need to switch between I-to-V and the $\times 10$ Fast Amp

Integrating mode: 16 pA photcathode current

: need gain of 4×10^5

: HV = 800 V

Counting mode : need gain of 2×10^7

: HV = 1350 V

Have prototype pion detector base and prototype fast amplifier (Jie Pan, U. Manitoba) - testing underway.

Summary

- Acrylic, PMTs: procured
- Prototyped detector tested with cosmics

To do:

- Complete the testing of PMT base/fast amplifier, procure full run
- Production 3-D printing of detector housing
- Assembly of detectors (W&M)
- Cosmic testing in parallel with assembly (Test Lab cosmic stand)

Backup

Pion detector tests at Mainz

- Data taking at MAMI-B microtron Nov. 23 26 2022
- 855 MeV e⁻ beam, 5 kHz rate, pencil beam
- Commercial QDC readout (CAEN V965)
- 2 Acrylic detectors studied:

Det. A: $3.8 \text{ cm} \times 10.2 \text{ cm} \times 30 \text{ cm}$ with 1.5'' PMT Det. B: $3.8 \text{ cm} \times 10.2 \text{ cm} \times 20 \text{ cm}$ with 1.5'' PMT

c.f. Design Pion detector: 2.5 cm \times 7.0 cm \times 23 cm with 1.0" PMT

GEANT 4 scaling of photoelectron signal: Design/Det. B = 0.65

- Measured: detector response vs. position along detector width for both detectors, vs. high voltage, and at different incident angles. Still to do: calibrate PMT gain.
- Will use to benchmark the GEANT 4 simulations of optical response & compare to cosmic muon results.

Pion detector tests at Mainz – typical spectra

Det. A: 30 cm wide

 σ /peak = 12.4%

Implied min. # pes (Poisson stats): 65

Design goal: $\sigma/\text{peak} < 25 \%$

Det. B: 20 cm wide

Implied min. # pes (Poisson stats): 78

Pion detector tests at Mainz

Variation of response across detector width: (Det. A)

Response with beam directly incident on PMT: (Det. A)

$$\sigma$$
/peak = 10.4%

Pion Detectors – Insertion into Pion Donut

Plastic wedges to adjust detectors individually to fit.

Pion Detectors – Insertion into Pion Donut

Pion Detectors ERR 2

2

Pion Detectors – Initial PMT testing

Gain vs. HV for ET 9125BQ using single photoelectron response (Simona M.)

Here, using all 11 dynodes & commercial high voltage divider. Matches vendor specs.

