Counting Analysis

Tuesday, July 29, 2025

Goals

Experiment Commissioning

- Align beam to collimator locations,
- Demonstrate detector performance,
- Calibrate the spectrometer optics model with sieve data at various beam energies;
- Measure the event rate distribution with the LH2 target measured at the thin quartz main detectors, to confirm simulation predictions and
 - test assumptions used in the deconvolution procedure to extract Moller asymmetry,
 - test assumptions used calculating the analyzing power for the accepted kinematics, which connects the measured asymmetry to the electron's weak charge;

Goals

- Measure detector response for thin quartz, showerMax, and pion detectors, in order to
 - calibrate the position sensitivity of each detector
 - characterize performance,
 - diagnose problems, and
 - monitor changes in light yield;
- Measure $el\pi$ in Ring 5 of thin quartz, using tracking, showerMax and pion detectors;
- Study backgrounds due to rescattering from beam axis using blocker collimator

Spectrometer optics commissioning plan

Note: In all tracking configurations, data-taking rate is limited by DAQ throughput - signal-to-noise is expected to be high, so essentially every triggered event will be a "good" Moller or e-p event, so will pre-scale triggers to about 3 kHz event rate in all cases.

The full spectrometer optics commissioning is **not** required in initial MOLLER low current commissioning before transition to high current.

- First steps use thin ¹²C targets with few nA beam.
- GEM alignment: Use tracks to mutually align the 4 GEMs in each sector (straight-line tracks).
 - Check alignment by projecting tracks to main detectors, upstream scanner
 - see outline of detector by requiring detector channel fired in coincidence with track.
 - Cross check by rotating GEMs to next open sector same flux distribution seen by different sets of 4 GEMs

Spectrometer Optics Commissioning Plan, p2

Verify Optics Model:

- o Insert sieve collimator, continue with thin ¹²C targets, 10's of nA beam
- Verify the sieve hole pattern of 12C-elastic events to verify optics model
- Requires multiple beam energies (1,2 & 3 pass beam).

Event rate distribution:

- Remove sieve, use LH₂ target, 5-pass beam, and ultra-low beam current (200 pA)
- Map event rate distribution over full azimuth and accepted radial range at 5-pass beam
- This data is also used the develop a position-dependent response function for each thin quartz and showerMax detector

Background measurement:

- Use Blocker collimator, LH₂ target, 5-pass beam
- measure rates in thin quartz and showerMax detectors, corresponding the backgrounds from rescattering of exhaust beam

Software repository and people

- https://github.com/JeffersonLab/moller-counting
 - This is part of the SBS software (code relevant for GEM and fADC data analysis).
 - Currently, this is used for the cosmic-ray test setup in W&M UMass cosmic setup (fADC data), and for the cosmic-ray JLab Test Lab setups(for GEM & fADC data)

People

- Chandan Ghosh (JLab)
- Sayak Chatterjee (UMass)
- Asar Ahmed (UVa)
- Zuhal Seyma Demiroglu, James Shirk (SBU)
- Lasitha Welianga, Buddhini Waidyawansa (LaTech)
- David Armstrong, Tasneem Raza (W&M)
- additional student/postdoc effort from detector subsystem groups for detector-specific analysis scripts

Cosmic data analysis - GEM detectors

- GEM code tested using cosmic-ray stand 4 MOLLER tracking GEMs (two from UVa, two from SBU) in stack, essentially the same as 4 GEMs in a Rotator sector.
- Same readout chain as in the SBS experiment.
- Use SBS alignment code to mutually align the 4 GEMs
- Initial results show position resolution for exceeds our 1 mm requirement (see next slides).

GEM analysis - 2D hits and Tracks

Analysis software based on SBS tools, is already in use with the W&M and JLab Cosmic Test Stand.

fADC250 based readout chain at W&M

- The main detectors are being tested with cosmic muons in the W&M setup.
- Data analysis is performed using the fADC decoding class from the MOLLER-counting repository.

Generating mock data for developing analysis code

- SBS uses detailed digitization procedure for simulated data
- MOLLER will use a similar approach, using digitized data from the remoll G4-based MOLLER simulation
- The digitized data will be sent through the analysis code to form tracks, ADC spectra
- Develop more analysis and debugging scripts for commissioning and running
- ★ We are planning to form a dedicated counting analysis group
- ★ More resources will be focused on this as detector development work are completing.
- ★ Timeline: We are planning have a fully set of analysis, debugging chain ready by the summer next year.

Summary

- Basic software for raw-data decoding exists for all the detectors (Cherenkov and GEMs).
 - Since the analysis scripts are based on the SBS, it is tested thoroughly during the SBS running.
 - The analysis chain is further tested for the MOLLER detector systems by many groups.
 - We have a clear path forward for developing advanced debugging and analysis scripts using simulated data
- Planning to bring more man power as we are planning to form a dedicated counting analysis group
- We are estimating by next summer we will have the complete analysis package ready using simulated data.

Back up

Comparison of noise occupancy for two APV cards in SBU09

Plastic scintillator detector -used for GEM data taking

Position Resolutions in X/Y directions

fADC250 based readout chain at W&M

- Main detector production modules are being tested with cosmic muons at W&M
- fADC based readout (similar to MOLLER data taking configuration) is being used at W&M
- MOLLER-Counting framework is being used to analyse the data
- Data analysis includes the reconstruction of the waveforms to the output charge calculation
- The plan is to develop the existing framework and add additional classes for the other auxiliary detectors

MOLLER-COUNTING: fADC250 data decoding and analysis

PE yield

Testing of MPD+fADC based data decoding at UMass

- A cosmic muon tracking system is setup at UMass using three triple GEM (10 cm × 20 cm) detectors
- Cherenkov detector prototype is placed in between the GEM chambers
- APV+MPD & fADC based DAQ system is used to readout the GEM & Cherenkov detector modules respectively
- Work is ongoing to use the MOLLER-COUNTING framework to decode the MPD and fADC data simultaneously and do the tracking

Tracking system performance at UMass (preliminary)

- Stand alone decoding of the GEM data
- Effort is ongoing to use the MOLLER-COUNTING framework and simultaneously decode the APV and fADC data
- Do the tracking to simulate the MOLLER commissioning phase

