MOLLER Overview

Kent Paschke
University of Virginia

August 1, 2025

The Observable: PV Asymmetry in Møller Scattering

$$\mathbf{A_{PV}} = \frac{\sigma_{\mathbf{R}} - \sigma_{\mathbf{L}}}{\sigma_{\mathbf{R}} + \sigma_{\mathbf{L}}}$$

COM Scattering Angle

$$= -\mathbf{m}\mathbf{E} \frac{\mathbf{G_F}}{\sqrt{2}\pi\alpha} \frac{\mathbf{16}\sin^2{\Theta}}{(\mathbf{3} + \cos^2{\Theta})^2} \mathbf{Q_W^e}$$

$$\mathbf{Q_W^e} = \mathbf{1} - 4\sin^2\theta_{\mathbf{W}} \sim \mathbf{0.075}$$

The Weak Charge of the Electron

$$\delta(Q^{e_{W}}) = \pm 2.1 \% (stat.) \pm 1.1 \% (syst.)$$

Jefferson Lab polarized electron beam $11~GeV,65~\mu A$ 90% beam polarization

$$A_{PV} \sim 32 ppb$$
 $\delta(A_{PV}) \sim 0.8 ppb$

- Unique sensitivity to TeV scale physics coupling more to leptons than to quarks
- Purely leptonic low Q² reaction: theory prediction accurately calculable with negligible hadronic physics uncertainty

4th Generation Parity-Violating Electron Scattering Experiment at JLab

Variety of Physics Topics:

continuous interplay between hadron physics and electroweak physics

State of the Art

- sub-part per billion statistical reach and systematic control
- sub-1% normalization control

Unique opportunity leveraging 12 GeV Upgrade investment

MOLLER: Special purpose installation in Hall A

~ 30 m

Kent Paschke

High Precision Measurement

Precise measurement of parity-violation in electron-electron scattering to search for new physics

Difference in cross-section in scattering of left-handed vs right-handed electrons

$$\mathbf{A_{PV}} = \frac{\sigma_{\mathbf{R}} - \sigma_{\mathbf{L}}}{\sigma_{\mathbf{R}} + \sigma_{\mathbf{L}}}$$

Rapid (1kHz) measurement over helicity reversals to cancel noise

- Asymmetry measurements at 960Hz, each with precision 91 ppm
- Requires ~130 GHz signal rate
- magnetic spectrometer to spatially separate signal from background
- collect scattered particles in range 0.3° 1.1°, 2.5 GeV 8 GeV
- high luminosity (65uA, 1.25m LH2 target)

$$\sigma_{A_{cxpt}} = \frac{\sigma_{pair}}{\sqrt{N_{pair}}} = \frac{91 \text{ppm}}{\sqrt{30 \times 10^9}} = 0.5 \text{ppb}$$

Pulse-pair "width" σ_{pair} is the parameter that determines the statistical error

MOLLER Apparatus Overview

Main Detector Detector Window Vacuum enclosures 100" OD Drift Pipe Target Beampipes Toroid magnets (TM) Diff Pump Apertures

target: 5 m upstream of hall pivot, apparatus > 30 m

Getting to high precision

0.5 ppb error bar requires strict control of noise and systematic errors (false asymmetries)

Target

- high power ~3kW beam power for high luminosity
- stability density fluctuation will introduce noise (<30 ppm at 960Hz comparison)
- average density loss: could introduce non-linearity with beam current (<1% at 65uA)
- all ferromagnetic components must be qualified
- Thin Aluminum windows
- Alignment

Parameter	Random Noise (65 μ A)	
Statistical width (0.5 ms)	\sim 82 ppm	
Target Density Fluctuation	30 ppm	
Beam Intensity Resolution	10 ppm	
Beam Position Noise	7 ppm	
Detector Resolution (25%)	21 ppm (3.1%)	
Electronics noise	10 ppm	
Measured Width (σ_{pair})	91 ppm	

Error Source	Fractional Error (%)	
	Run 1	Ultimate
Statistical	11.4	2.1
Absolute Norm. of the Kinematic Factor	3	0.5
Beam (second moment)	2	0.4
Beam polarization	1	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	2	0.4
Beam (position, angle, energy)	2	0.4
Beam (intensity)	1	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.6	0.3
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	1.5	0.3
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.3	0.15
Transverse polarization	2	0.2
Neutral background (soft photons, neutrons)	0.5	0.1
Linearity	0.1	0.1
Total systematic	5.5	1.1

Achieving Specification

- Design informed by Qweak experience
- CFD simulations (S. Covrig Dusa)
- Jet at each window to cool dominant heat surface
- Qweak data shows noise dominated by lower frequencies, results reproduced in time-dependent CFD simulations

CFD demonstrates design meets requirements

Requirements:

- $\Delta \rho / \rho$ (%) < 1%
- σ_b < 30 ppm

CFD simulation result:

4x4 mm² raster area

- Δρ/ρ (%) ~ 0.85%
- σ_b < 13 ppm

LH2 density asymmetry at 1920 Hz

Summary

- •MOLLER is a high precision electroweak measurement with unique sensitivity to new physics
- •The experiment requires careful control of noise and systematic errors, including target density fluctuations, target density loss, and aluminum background
- •Current target design has been evaulated in time dependent CFD calculation, is expected to meet physics requirements

Kent Paschke

8