

DS Rebar (Revisited)

Eric King April 1st, 2025

Review – Ferrous Backgrounds

$$A_{\text{false}} = f_r P_e P_f A_n$$

P_f: Polarization of ferrous material

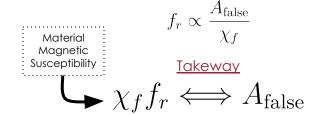
A_n: Average analyzing power of polz'd scattering processes

P_a: Polarization of the electron

f_r: fraction of detector Moller signal (Adjust by 10⁻⁴ 'ish for per e.o.t rate)

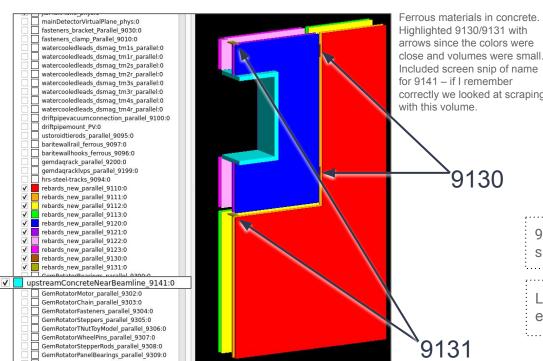
Design Parameter for MOLLER:

$$\Delta A_{\rm raw}[{\rm ppb}] \approx 0.54$$


We'd like two orders of magnitude cushion on a false asymmetry.

$$A_{\text{false}} \sim 0.1[\text{ppb}](10^{-2})(10^{-4}) \sim 10^{-16}$$

We do make some safe conservative approximations:


$$P_{e} \sim 1$$
 [beam polarization]
 $A_{n}^{e} \sim 10^{-3}$ [transmission analyzing power]

What we're left with is:

l	A A sub a sti sul	V	Coin Delevisation D f	Exaction may a a t	Function now Molley
	Material	X_r	Spin Polarization P_f	Fraction per e.o.t.	Fraction per Moller
	Carbon Steel	2000	1E-02	1E-11	1E-07
	Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
	Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
	Aluminum	0.0001	1E-09	1E-04	1E+00
Tungsten, too	→ Inconel 625	0.001	1E-08	1E-05	1E-01
	Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Original Simulations

correctly we looked at scraping with this volume.

9141 not used here but was used to investigate surface scattering at some point.

Looking at these historic results it looks as if the events all come from the upstream rebar planes.

Updated Results – April 2025

- Additional material added in simulation since the simulations in July '22.
 - DS toroid magnet vacuum box
 - GEM Rotator and detector materials.
- Used the same geometry as in July '22 so I would at least have a clean comparison.

Primary Hits Summary

```
# Det\mTrid
                          TOTAL
    9110
                    0
    9111
              384
    9112
                    392
    9113
              6544
                    4928
    9120
                    0
    9121
                    0
    9122
                          3004
    9123
              2071
                    933
    9130
                    0
    9131
                    0
```

Total of 15274 primary hits

Updated Results – April 2025

- Additional material added in simulation since the simulations in July '22.
 - DS toroid magnet vacuum box
 - GEM Rotator and detector materials.
- Used the same geometry as in July '22 so I would at least have a clean comparison.

Each simulation was 100K events.

Secondary Sims for 9111 & 9123 did not produce any secondary hits. I've not included them for space reasons but they were also 100K events each.

500K events total.

Secondary Hits Summary

gHitDist9911: 0

```
Secondary Simulation Hit on Sensitive Detectors
 Ferrous Vol: 9112
eHitDist9928: 0
gHitDist9928: 7
eHitDist9911: 0
gHitDist9911: 4
Secondary Simulation Hit on Sensitive Detectors
 Ferrous Vol: 9113
eHitDist9928: 0
gHitDist9928: 4
eHitDist9911: 0
gHitDist9911: 3
Secondary Simulation Hit on Sensitive Detectors
 Ferrous Vol: 9122
eHitDist9928: 0
gHitDist9928: 1
eHitDist9911: 0
```

New Results - DS Rebar

Sens Volume: Rebar DS -- 9110-9131

Sim Date: 3/16/2025

Detector #: 9110

Rebar DS -- 9110-9131 -- Unweighted By BField

Total Prim's: 3,000,000,000

Primary Counts				
Primaries	0	0&1		
9110		15274		

(9928 Main Det) Secondary Counts 0&1			
Electrons	Gammas		
0	12		
	777		

0&1				
Secondaries	Electrons	Gammas		
9110	0	7		

Total Sec's: 500,000 (per sens det)

Pi	Primary Fractional				
Primaries	0	0&1			
9110		5.09E-06			

(9928 MainDe	et) Secondary Fra	ctional - 0&1
Secondaries	Electrons	Gammas
9110	0.00E+00	2.40E-05

(9911 PMT Region) Secondary Fractional - 0&1					
Secondaries	Secondaries Electrons Gammas				
9110	0.00E+00	1.40E-05			

<== 100000 x 5 volumes with primary events

(9928 MainDet) Total Fractional - 0&1				
Secondaries Electrons Gammas				
9110	0.00E+00	1.22E-10		

(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Secondaries Electrons Gammas				
9110	0.00E+00	7.13E-11			

Old Results

Comments:

Primary events scale reasonably well (between new and old sims), the number of primary events in 2025 sims was a factor of ~21.8 greater than 2022 sims and number of detected primaries is ~20.8 greater.

No charges were detected from secondaries in 2022 nor now. A few gammas.

Final background fractions are reasonably similar given the very few events in the secondary sims in the original work.

*Secondary sims run with beam and beam-daughter electrons from primary sim

DS Rebar Symm Fields

Total Events	242,750,000		
det\mTrid	0	1	TOTAL
9110	0	0	0
9111	0	0	0
9112	27	27	54
9113	321	228	549
9120	0	0	0
9121	0	0	0
9122	0	0	0
9123	117	14	131
9130	0	0	0
9131	0	0	0
Sum	465	269	734

Primary Sim Results

Secondary Sim Results

		Charges - Prin	nary and Second	lary Electrons		
DetNo	1-10MeV	10-100MeV	100-1000MeV	>1GeV	Total	Norm P&S
9110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9111	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9112	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9113	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9120	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9121	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9122	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9130	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9131	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Sum	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
		Gammas – Pri	mary and Secon	dary Electrons		
DetNo	1-10MeV	10-100MeV	100-1000MeV	>1GeV	Total	Norm P&S
9110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9111	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9112	1.0E-05	0.0E+00	0.0E+00	0.0E+00	1.0E-05	1.1E-12
9113	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9120	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9121	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9122	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9130	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9131	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Sum	1.0E-05	0.0E+00	0.0E+00	0.0E+00	1.0E-05	1.9E-11

DS Rebar Verdict

- Main Detector charge rates: < 10⁻¹¹
- Main Detector gamma rates:
 ~1.22(10⁻¹⁰)
 - \circ 10% response \Rightarrow 1.22(10⁻¹¹)
- PMT Region charge rates: < 10⁻¹¹
- PMT Region gamma rates: 7.1(10⁻¹¹)
 - \circ 10% response \Rightarrow 7.1(10⁻¹²)

⇒ Rates would be tolerable even if we used the tolerable backgrounds for carbon steel; SS rebar not an issue.