Polarization Extraction with the Compton Polarimeter

Kent Paschke

Compton Polarimetry in Hall A

JNIVERSITY
"VIRGINIA

Kent Paschke **Compton Working Group Meeting** May 22, 2024 2

- Polarized electron-photon scattering
- Independent detection of backscattered photons and recoil electrons
- state-of-the-art: 0.4% precision at JLAB at 1 GeV

Compton Spectrum

$$
A_{\text{long}} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1 + a)) \left[1 - \frac{1}{(1 - \rho(1 - a))}\right]
$$

JNIVERSITY
"VIRGINIA

$$
\frac{d\sigma}{d\rho} = 2\pi r_o^2 a \left[\frac{\rho^2 (1-a)^2}{1-\rho(1-a)} + 1 + \left(\frac{1-\rho(1+a)}{1-\rho(1-a)} \right)^2 \right]
$$

$$
\rho = E_{\gamma}/E_{\gamma}^{max} \qquad E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2} \qquad a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m}
$$

Kent Paschke **Compton Working Group Meeting** May 22, 2024 3

Landmarks in high precision Compton polarimetry

• Conceptual Design Report of a Compton Polarimeter for CEBAF Hall A - 1996 • Construction and first operations in Hall A: NIM A 443 (2000), NIM A 459 (2001), NIM A 551 (2005) HAPPEX-II First high-precision electron detector result NIM A 676 (2012),NIM A 728 (2013), NIM A 822 (2016) • CREX 0.4% precision, with integrating photon detection Phys.Rev.C 109 (2024) 2, 024323

-
-
- Spin Dance 2000 Cross comparison of all JLab polarimeters Phys.Rev.ST Accel.Beams 7 (2004) 042802
	-
- PREX-I, HAPPEX-3: First use of green (532nm) cavity, high precision integrating photon detection
- Qweak (Hall C) High precision (0.6%) with a diamond microstrip electron detector *Phys.Rev.X* 6 (2016) 1, 011013
	-

Kent Paschke **Compton Working Group Meeting** May 22, 2024 5

Electron Detector Electron Detector

- \sim 768 ch 240 mm silicon negadout direction • only one readout direction (dispersive)
- measures position relative to primary beam $\rightarrow \rho = E_{\gamma} / E_{\gamma, max}$
	- Multiple planes, useful for reducing noise but otherwise perhaps not needed
	- Simple road finding tracking (everything of interest has a well-defined angle)

Previously: microstrip detectors

3rd dipole

Excellent response function is assumed: strip width / Y_{max}

Kent Paschke **Compton Working Group Meeting** May 22, 2024 6

Scaler mode : every hit on each detector strip is counted without requiring trigger (un-gated by mistake) Accumulation mode : hits that satisfy the trigger condition are counted and (un-gated by mistake) Accuration mode : every that satisfy the trigger condition are condition and $\overline{\text{Acaler mode}}$: every

signals from two consecutive

 histogrammed internally (gated by MPS)

Kent Paschke **Compton Working Group Meeting** May 22, 2024 7

Data collected simultaneously in three modes: Event mode : snapshot of all detector strips is recorded for every trigger (prescaled) Event mode : snapshot of all detector strips is recorded for every trigger (prescaled) Scaler mode : every hit on each detector strip is counted without requiring trigger

D. Dutta

Calibrating the electron spectrum

To calibrate, you can use:

- Compton edge + "known" dispersion
- Compton edge + zero crossing
- Fit to full shape of asymmetry
- All measured strips
- One or few strips near the Compton edge
- One or few strips at the A_p minimum

Hit spectrum over strip number

$$
p_e \longrightarrow \rho = E_{\gamma}/E_{\gamma}^{max}
$$

To extract polarization, you can use:

Kent Paschke Compton Working Group Meeting Compton Working Group Meeting May 22, 2024

Qweak used a fit, and all measured strips

Qweak (Hall C) Compton result

IOTE: dominant uncertainty from known and understood DAQ design flaws.

MODELSIM used to simulation FPGA coding, larified efficiency / deadtime issues

his kind of modeling of even a simple trigger is ritical: high precision measurements of a counting symmetry require a thorough understanding of ne effects of noise, efficiency and signal overlap when processed through the DAQ

Qweak used only the electron detector for the polarimetry result

Photon Detector

We require a large, dense photon detector that can contain the shower up to ~3 GeV γ

2x2 stack of PBWO₄

- 6x6 cm x 20 cm length (total)
- On loan from Yerevan/Hall C
- Stryrofoam wrapped for thermal stability
- Much lower light production compared to smaller scintillating crystal used for low-energy (GSO)
- Crucially: this scintillator has no detected longlived fluorescence
- Tungsten "Jaws" remote variable collimator in front of detector cut synchotron radiation from D2 and D₃ bends.

 \setminus

Kent Paschke **Compton Working Group Meeting** May 22, 2024 10

8

Kent Paschke **Compton Working Group Meeting** May 22, 2024 11

Photon Detector Response functions **Cross−section, 11 GeV and 532 nm** simulations of GSO response

GSOCrystalPhysical_eDep:gammaE {GSOCrystalPhysical_eDep>0.1}

Photon analysis techniques

pulse integral $A(Y)$ convolutes $A(E)$ and $Y(E)$.

- **Photon counting** collect each pulse and histogram pulse integral Y. As asymmetry as a function of
- Sensitive to most of all to response function calibration the cut-off at trigger threshold is a mine field!

- **Photon integration** Like the main experiment: integrate total PMT current during helicity windows, and form an asymmetry. However, signal is significant over background, so requires background
	-

subtraction. Sensitive to linearity, varying backgrounds, and photon acceptance.

Measuring the spectrum is still crucial, to verify acceptance/response model.

Photon acceptance

photon acceptance cut by misalignment to collimator

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

e-γ coincidence: response function calibration

- Electron-photon coincidence
- low-rate trigger (prescaled)
- leaves some portion of the response function unmeasured....

• Photon discriminator threshold and minimum e- detector approach

Kent Paschke **Compton Working Group Meeting** May 22, 2024 14

Photon detector response in coincidence with single e-det strip

e-γ coincidence: response function calibration

- Electron-photon coincidence
- low-rate trigger (prescaled)
- leaves some portion of the response function unmeasured....

• Photon discriminator threshold and minimum e- detector approach

Kent Paschke **Compton Working Group Meeting** May 22, 2024 14

Photon detector response in coincidence with single e-det strip

HAPPEX-3 "bump"

Compton Edge

Kent Paschke **Compton Working Group Meeting** May 22, 2024 15

Lesson: your electron response function may not be as pure as you would like. Test this, consider backgrounds created by Compton scattered events

Lessons for Hall A (from Qweak) **Lessons for Hall A**

crossing).

design and test a dead-time free and efficient DAQ.

- **Important for electron detector to cover a large fraction of the Compton electron spectrum (include regions on both side of zero**
- **Build DAQ simulation well before the experiment and use it to**
- **Very important to collect data in event mode, scaler mode and** Dipangkar Dutta
- More generally: testing multiple ways of performing these measurements provide a
- redependent test requires great attention to perform correctly But each independent test requires great attention to perform correctly - don't do

accumulator mode, simultaneously.

catch for many otherwise-hidden sources of systematic errors.

bad tests!

Summary

- Other topics? There are many
	- Lots of work on laser polarimetry
	-
	- Laser reliability issues may be addressed with hardware improvements. – Synchrotron light on photon detector and electron detector
- Design of electron detector, photon detector, and DAQ need to be cognizant of specific needs of this measurement.
	- Both HVMAPS and diamond μstrips appear well suited, but the readout needs to match the needs of this measurement
	- DAQ design should come together so that there is time to simulate operation
	- Simulations of backgrounds, signals, and detector responses should be performed early enough to inform hardware, DAQ capabilities, and analysis
	- There is a lot of knowledge to build from, in publications, log entries, presentations, and institutional memory. The key is to access it.

 $-$ ………

Kent Paschke **Compton Working Group Meeting** May 22, 2024 18

Collimators protect optics at small crossing angles, but create backgrounds

Existing 1cm aperture (1.4° crossing)

Typical "good" brem rate: ~ 100 Hz/uA Residual gas should be about 10x less

Beam Aperture

Basic Strategy

• Two independent measurements in the experimental hall which can be cross-checked

-
- Continuous monitoring during production (protects against drifts, precession...)
-

• Statistical power to facilitate cross-normalization (get to systematics limit in about 1 hour)

Kent Paschke **Compton Working Group Meeting** May 22, 2024 20

Compton

JNIVERSITY

TRGINIA

- Polarized electron-photon scattering
- continuous measurement with high precision
- state-of-the-art: 0.6% precision at JLAB at 1 GeV

Achieving ultimate precision requires cross-checks and study

• ultimate precision will only be achieved during the long MOLLER run

Møller

- Elastic *ee* scattering from magnetized iron target
- 0.5% precision demonstrated with Hall C polarimeter

Electron Detector in Hall A (2005)

Background \sim 100 Hz / uA at Y_{det} \sim 5mm

data from HAPPEX-II (2005) Ebeam~3 GeV, 45 uA, Pcavity < 1000 W

Rough guess: 65% efficient?

Cons: radiation hardness and synch light sensitivity
Kent Paschke

Compton Working Group Meeting May 22, 2024 22

Thicker Si strips with existing electronics? (is rescattering from Si substrate an important systematic correction?)

New electronics for Si ustrips?

Current Electron μstrip Detectors Existing Hall A Si strip system Noise vs. signal, especially in Hall, makes high efficiency hard

49.75

57.44

Hall C style diamond strips?

Improved electronics? (compton edge from hit pattern is an important calibration point: high efficiency needed!)

Improved radiation hardness & synch light sensitivity

Scaler/Accum Polarization Ratio

A Powerful diagnostic

Kent Paschke **Compton Working Group Meeting** May 22, 2024 23

If trigger inefficiency corrections, background subtractions, noise subtraction and other procedures are implemented correctly - the ratio of the polarization from scaler to accumulator data should remain constant.

Electron Detector, Hall C

• Fit to the asymmetry spectrum shape to theoretical asymmetry distribution. • Shape (including zero crossing) provides calibration, to absolute asymmetry.

-
-
- Check with Compton edge in the rate spectrum, and known BdL.

High Precision Polarimetry = Long Term Program

High Precision Polarimetry ad-hoc Working Group meeting, November 2016

30 attendees from 10 institutions, discussing Mott, and Hall A Moller and Compton

Summary of Systematic Uncertainty, run phases

DOE Nuclear Physics MOLLER Science Review UMass, Amherst September 10, 2014

Kent Paschke **May 22, 2024** Compton Working Group Meeting 2008 2024 May 22, 2024 26

Mott polarimetry

Wasn't featured in the proposal, but useful and important tool and cross-check

- Measurement at low energy in injector
- Upgraded for precise asymmetry measurement
- Techniques for limiting Sherman function uncertainty
- Ongoing research into AESOP using atomic optical techniques to calibrate Mott Sherman function (T. Gay, Nebraska)

Ultimate Systematic Uncertainties

- \cdot Phase 1:
- Phases 2 and 3: 0.4%

Kent Paschke **Compton Working Group Meeting** May 22, 2024 28

Estimates of achievable uncertainties based on previous experience, with modest extrapolation

MOLLER polar

Moller polarimeter

elated

Compton polarimeter