Polarization Extraction with the Compton Polarimeter

Kent Paschke

Compton Polarimetry in Hall A

- Polarized electron-photon scattering
- Independent detection of backscattered photons and recoil electrons
- state-of-the-art: 0.4% precision at JLAB at 1 GeV

Compton Working Group Meeting

Compton Spectrum

$$A_{\text{long}} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1 - \rho(1+a))} \right] \left[1 - \frac{1}{($$

Compton Working Group Meeting

Kent Paschke

JNIVERSITY VIRGINIA

$$\frac{d\sigma}{d\rho} = 2\pi r_o^2 a \left[\frac{\rho^2 (1-a)^2}{1-\rho(1-a)} + 1 + \left(\frac{1-\rho(1+a)}{1-\rho(1-a)} \right)^2 \right]$$

$$\rho = E_{\gamma}/E_{\gamma}^{max} \quad E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2} \qquad a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m_{\gamma}}$$

Landmarks in high precision Compton polarimetry

Conceptual Design Report of a Compton Polarimeter for CEBAF Hall A - 1996 Construction and first operations in Hall A: NIM A 443 (2000), NIM A 459 (2001), NIM A 551 (2005) HAPPEX-II First high-precision electron detector result NIM A 676 (2012), NIM A 728 (2013), NIM A 822 (2016)

- Spin Dance 2000 Cross comparison of all JLab polarimeters Phys.Rev.ST Accel.Beams 7 (2004) 042802
- PREX-I, HAPPEX-3: First use of green (532nm) cavity, high precision integrating photon detection
- Qweak (Hall C) High precision (0.6%) with a diamond microstrip electron detector Phys. Rev. X 6 (2016) 1, 011013
- CREX 0.4% precision, with integrating photon detection Phys.Rev.C 109 (2024) 2, 024323

Electron Detector

Previously: microstrip detectors

- only one readout direction (dispersive)
- measures position relative to primary beam $\rightarrow \rho = E_{\gamma} / E_{\gamma,max}$
- Multiple planes, useful for reducing noise but otherwise perhaps not needed
- Simple road finding tracking (everything of interest has a well-defined angle)

Kent Paschke

JNIVERSITY VIRGINIA

Compton Working Group Meeting

5

Kent Paschke

Compton Working Group Meeting

3rd dipole

Excellent response function is assumed: strip width / Y_{max}

D. Dutta

Data collected simultaneously in three modes: **Event mode : snapshot of all detector strips is recorded for every trigger (prescaled)**

<u>Scaler mode</u> : every hit on each detector strip is counted without requiring trigger (un-gated by mistake) Accumulation mode : hits that satisfy the trigger condition are counted and

Kent Paschke

histogrammed internally (gated by MPS)

Compton Working Group Meeting

May 22, 2024

Hit spectrum over strip number

To calibrate, you can use:

- Compton edge + "known" dispersion
- Compton edge + zero crossing
- Fit to full shape of asymmetry

Kent Paschke

Compton Working Group Meeting

Calibrating the electron spectrum

$$p_e \longrightarrow \rho = E_{\gamma}/E_{\gamma}^{max}$$

To extract polarization, you can use:

- All measured strips
- One or few strips near the Compton edge
- One or few strips at the Ap minimum

Qweak used a fit, and all measured strips

Qweak (Hall C) Compton result

Qweak used only the electron detector for the polarimetry result

Source	Uncertainty	$\Delta P/P\%$	
Laser Polarization	0.18%	0.18	
helicity correl. beam	5 nm, 3 nrad	< 0.07	
Plane to Plane	secondaries	0.00	
magnetic field	0.0011 T	0.13	
beam energy	1 MeV	0.08	
detector z position	1 mm	0.03	
trigger multiplicity	1-3 plane	0.19	
trigger clustering	1-8 strips	0.01	
detector tilt (x, y and z)	1 degree	0.06	
detector efficiency	0.0 - 1.0	0.1	
detector noise	up to 20% of rate	0.1	
fringe field	100%	0.05	
radiative corrections	20%	0.05	
DAQ efficiency correction	40%	0.3	
DAQ efficiency ptto-pt.		0.3	
Beam vert. pos. variation	0.5 mrad	0.2	
spin precession in chicane	20 mrad	< 0.03	
Electron Detector Total		0.56	
Grand Total		0.59	

IOTE: dominant uncertainty from known and nderstood DAQ design flaws.

10DELSIM used to simulation FPGA coding, larified efficiency / deadtime issues

his kind of modeling of even a simple trigger is ritical: high precision measurements of a counting symmetry require a thorough understanding of he effects of noise, efficiency and signal overlap /hen processed through the DAQ

Photon Detector

We require a large, dense photon detector that can contain the shower up to $\sim 3 \text{ GeV } \gamma$

2x2 stack of PBWO₄

- 6x6 cm x 20 cm length (total)
- On loan from Yerevan/Hall C
- Stryrofoam wrapped for thermal stability
- Much lower light production compared to smaller scintillating crystal used for low-energy (GSO)
- Crucially: this scintillator has no detected longlived fluorescence
- Tungsten "Jaws" remote variable collimator in front of detector cut synchotron radiation from D2 and D3 bends.

Compton Working Group Meeting

Photon Detector Response functions simulations of GSO response

GSOCrystalPhysical_eDep:gammaE {GSOCrystalPhysical_eDep>0.1}

Compton Working Group Meeting

Kent Paschke

Photon analysis techniques

pulse integral A(Y) convolutes A(E) and Y(E).

subtraction. Sensitive to linearity, varying backgrounds, and photon acceptance.

Measuring the spectrum is still crucial, to verify acceptance/response model.

- **Photon counting** collect each pulse and histogram pulse integral Y. As asymmetry as a function of
- Sensitive to most of all to response function calibration the cut-off at trigger threshold is a mine field!

- **Photon integration** Like the main experiment: integrate total PMT current during helicity windows, and form an asymmetry. However, signal is significant over background, so requires background

Kent Paschke

Photon acceptance

photon acceptance cut by misalignment to collimator

e-γ coincidence: response function calibration

- Electron-photon coincidence
- low-rate trigger (prescaled)
- leaves some portion of the response function unmeasured....

Photon detector response in coincidence with single e-det strip

Photon discriminator threshold and minimum e- detector approach

Compton Working Group Meeting

May 22, 2024

e-γ coincidence: response function calibration

- Electron-photon coincidence
- low-rate trigger (prescaled)
- leaves some portion of the response function unmeasured....

Photon detector response in coincidence with single e-det strip

Photon discriminator threshold and minimum e- detector approach

Compton Working Group Meeting

May 22, 2024

Lesson: your electron response function may not be as pure as you would like. Test this, consider backgrounds created by Compton scattered events

Kent Paschke

Compton Working Group Meeting

HAPPEX-3 "bump"

Compton Edge

May 22, 2024

Lessons for Hall A (from Qweak)

crossing).

design and test a dead-time free and efficient DAQ.

accumulator mode, simultaneously.

catch for many otherwise-hidden sources of systematic errors.

bad tests!

- Important for electron detector to cover a large fraction of the **Compton electron spectrum (include regions on both side of zero**
- Build DAQ simulation well before the experiment and use it to
- Very important to collect data in event mode, scaler mode and Dipangkar Dutta
- More generally: testing multiple ways of performing these measurements provide a
- But each independent test requires great attention to perform correctly don't do

- Other topics? There are many
 - Lots of work on laser polarimetry

 - Laser reliability issues may be addressed with hardware improvements. - Synchrotron light on photon detector and electron detector
- Design of electron detector, photon detector, and DAQ need to be cognizant of specific needs of this measurement.
 - Both HVMAPS and diamond µstrips appear well suited, but the readout needs to match the needs of this measurement
 - DAQ design should come together so that there is time to simulate operation
 - Simulations of backgrounds, signals, and detector responses should be performed early enough to inform hardware, DAQ capabilities, and analysis
 - There is a lot of knowledge to build from, in publications, log entries, presentations, and institutional memory. The key is to access it.

-

Summary

Kent Paschke

Compton Working Group Meeting

Collimators protect optics at small crossing angles, but create backgrounds

Existing 1cm aperture (1.4° crossing)

Typical "good" brem rate: ~ 100 Hz/uA Residual gas should be about 10x less

Kent Paschke

Beam Aperture

- Continuous monitoring during production (protects against drifts, precession...)

Compton

JNIVERSITY

IRGINIA

- Polarized electron-photon scattering
- continuous measurement with high precision
- state-of-the-art: 0.6% precision at JLAB at 1 GeV

Achieving ultimate precision requires cross-checks and study

ultimate precision will only be achieved during the long MOLLER run

Basic Strategy

• Two independent measurements in the experimental hall which can be cross-checked

Statistical power to facilitate cross-normalization (get to systematics limit in about 1 hour)

Møller

- Elastic *ee* scattering from magnetized iron target
- 0.5% precision demonstrated with Hall C polarimeter

Phase 1:	1%
• Phases 2 and 3:	0.4%

Compton Working Group Meeting

Electron Detector in Hall A (2005)

Background ~ 100 Hz / uA at Y_{det} ~ 5mm

data from HAPPEX-II (2005) Ebeam~3 GeV, 45 uA, $P_{cavity} < 1000 W$

Current Electron µstrip Detectors Noise vs. signal, especially in Hall, makes high efficiency hard Existing Hall A Si strip system

49.75

57.44

89.77

Thicker Si strips with existing electronics? (is rescattering from Si substrate an important systematic correction?)

New electronics for Si ustrips?

Cons: radiation hardness and synch light sensitivity Kent Paschke

Compton Working Group Meeting

Rough guess: 65% efficient?

Hall C style diamond strips?

Improved electronics? (compton) edge from hit pattern is an important calibration point: high efficiency needed!)

Improved radiation hardness & synch light sensitivity

May 22, 2024

Scaler/Accum Polarization Ratio

A Powerful diagnostic

If trigger inefficiency corrections, background subtractions, noise subtraction and other procedures are implemented correctly - the ratio of the polarization from scaler to accumulator data should remain constant.

Compton Working Group Meeting

Kent Paschke

Electron Detector, Hall C

- Check with Compton edge in the rate spectrum, and known BdL.

• Fit to the asymmetry spectrum shape to theoretical asymmetry distribution. • Shape (including zero crossing) provides calibration, to absolute asymmetry.

High Precision Polarimetry = Long Term Program

830004

Summary of Systematic Uncertainty, run phases

Uncertainty Source	Run Phase1 Fractional Error	Run Phase 2 Fractional Error	Ultimate Fractional Error
Statistical	10.9	3.9	2.0
kinematic normalization	3	0.7	0.5
Beam Polarization	1	0.4	0.4
Transverse beam polarization	2	0.2	0.2
beam (2nd moment)	4	0.4	0.4
Beam (position/angle/energy)	4	0.4	0.4
Beam (intensity)	3	0.3	0.3
e+p (+γ) → e+X (+γ)	2	0.4	0.4
e+p (+γ) → e+p (+γ)	1	0.3	0.3
ү+р→(п,µ,К)+Х	1	0.4	0.3
e+Al (+γ) → e+Al (+γ)	0.3	0.3	0.3
neutral backgrounds	0.5	0.1	0.1
Total systematic	8.0	1.3	1.1

DOE Nuclear Physics MOLLER Science Review UMass, Amherst

Kent Paschke

JNIVERSITY VIRGINIA

September 10, 2014

Compton Working Group Meeting

Mott polarimetry

- Measurement at low energy in injector
- Upgraded for precise asymmetry measurement
- Techniques for limiting Sherman function uncertainty
- Ongoing research into AESOP using atomic optical techniques to calibrate Mott Sherman function (T. Gay, Nebraska)

Wasn't featured in the proposal, but useful and important tool and cross-check

Ultimate Systematic Uncertainties

Estimates of achievable uncertainties based on previous experience, with modest extrapolation

Moller polarimeter

Relative Error (%)	
Target polarization	0.30%
Analyzing power	0.20%
Levchuk effect	0.20%
Target Temperature	0.05%
Dead time	0.10%
Background	0.01%
Others	0.10%
Total	0.45%

MOLLER pola

- Phase 1:
- Phases 2 and 3: 0.4%

Kent Paschke

Compton polarimeter

Relative Error (%)	electron	photon		
Position Asymmetries	-	_	I٢]
E_{beam} and λ_{laser}	0.03			
Radiative Corrections	0.05			
Laser Polarization	0.2			
Background/Deadtime/	0.2	0.2	ſ]
Analyzing Power Calibration / Detector Linearity	0.25	0.35		uncorr
Total	0.38	0.45		_

rimetry precision goal	
1%	

Compton Working Group Meeting

elated