Ferrous Materials: Pion Donut

- \Rightarrow Struts,
- \Rightarrow Strut Fasteners
- \Rightarrow Wall Tie Rods
- ⇒ Diagonal Supports

Eric King Last Updated: 08.28.2023

Ferrous Information

Ferrous Background Tolerances By Relative Susceptibility

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Carbon Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Depolarization

Photon and Electron Polarization in High-Energy Bremsstrahlung and Pair Production with Screening*

HAAKON OLSEN, Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway

AND

L. C. MAXIMON,[†] Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway and Department of Theoretical Physics, The University, Manchester, England (Received November 24, 1958)

This slide is from old polarimetry talk.

$$D(\mathbf{p}_{1}\boldsymbol{\zeta}_{1}) = \frac{k^{2}(1-\frac{1}{3}\boldsymbol{\zeta}_{1z}^{2})}{(No \ sc.)} \quad (9.3)$$

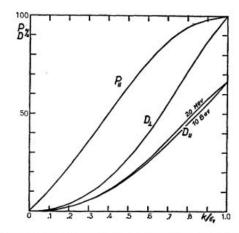


FIG. 5. Circular polarization of bremsstrahlung beam from longitudinally polarized electrons,

$$P_{II} = P(\mathbf{p}_1, \boldsymbol{\zeta}_1 \text{ long}, \mathbf{e}_{\text{circ}}),$$

and depolarization of longitudinally polarized electrons,

 $D_{11} = D(\mathbf{p}_1, \boldsymbol{\zeta}_1 \mathbf{long})$

and of transversely polarized electrons, $D_{\perp} = D(\mathbf{p}_{1}, \boldsymbol{\zeta}_{1 \text{ trans}})$. Coulomb and screening effects are included. The curves for P_{11} and D_{\perp} are valid for all elements and for any incident electron energy above ≈ 20 Mev. D_{11} depends slightly on the electron energy; curves are shown for incident electron energies 20 Mev and 10 Bev.

Depolarization

	plot $\frac{2}{3} \times \frac{x^2 - 2x + 1}{x^2 - \frac{2}{3}x + 1}$ $x = 0$ to 1
Variables	
$E_{\gamma} = ext{gamma energy}$	Plot:
$E_i = $ initial electron energy	0.7
$E_f = \text{final electron energy}$	0.6
$\zeta_{1z} = 0$:longitudinal pol or 1:transverse	0.5
x = fraction of energy remaining after internal brem	
	0.4
From the Maximon paper:	0.3
This slide is from old	0.2
	0.1
polarimetry talk.	0.2 0.4 0.6 0.8 1.0
$D = \frac{k^2(1 - \frac{1}{3}\zeta_{1z}^2)}{E_i^2 + E_f^2 - \frac{2}{3}E_iE_f}$	
$D_i + D_j - \frac{1}{3}D_iD_j$	
\wedge	
Using our variables for a longitudinally polarized electrons	oduces plot
	Reprocession Pro
	Reproduces plot
$x=1 \Rightarrow \text{No bremm}$	
$D = \frac{3}{3} \frac{x^2 - 2x + 1}{x^2 - \frac{2}{3}x + 1}$ x~0 \Rightarrow Almost all bremm'd away	
	0 1 2 3 4 5 6 7 8 4/4 10

Consulting the gods of computing...

2 $x^2 - 2x + 1$

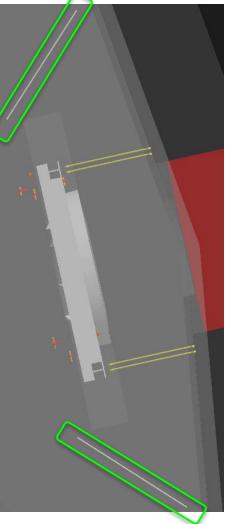
Input interpretation:

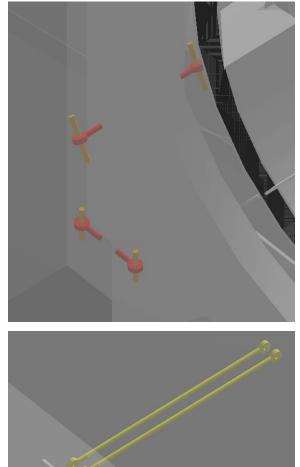
Simulated Ferrous Volumes

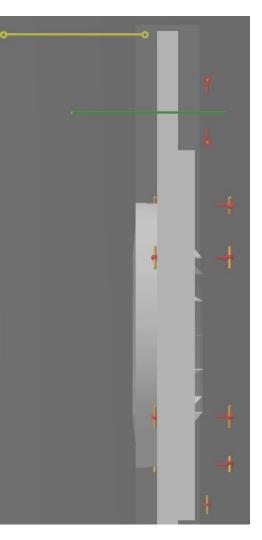
Pion Donut

Distribution of ferrous material in remoll visualization.

Struts: Hold the donut in place

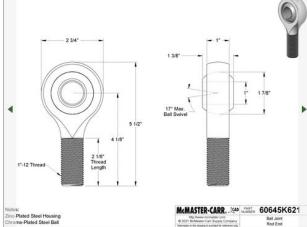

Strut Bolts:

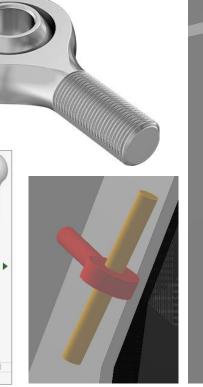

Fasteners for the struts.

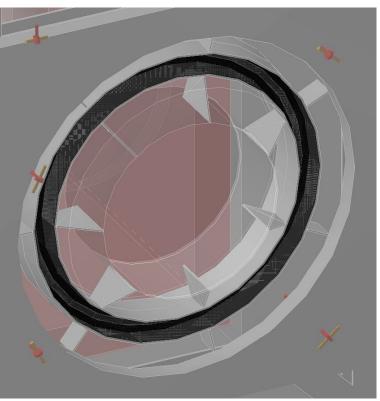

Tie Rods:

Connect pion donut support structure to Hall wall

Diagonal Support: Connect donut structure to Hall wall.

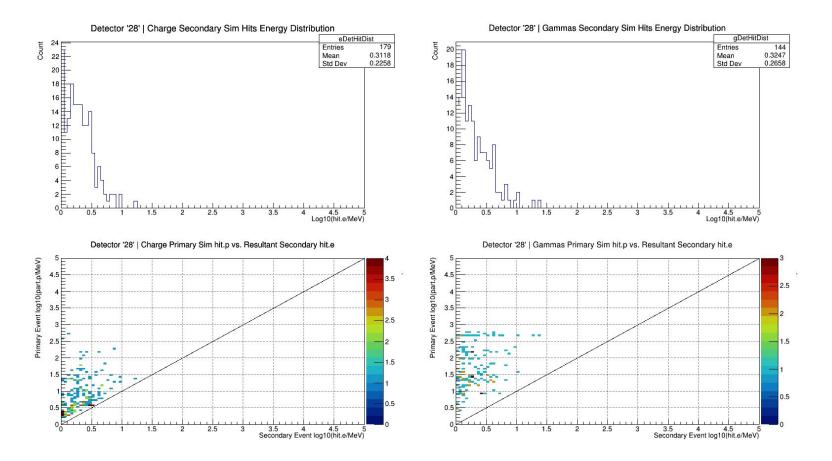


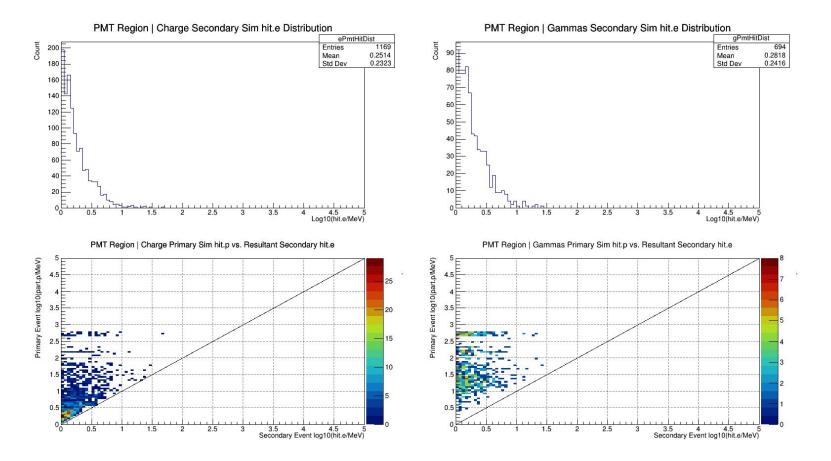



Zinc-plated Carbon Steel

Length of strut ends reduced from previous simulations.

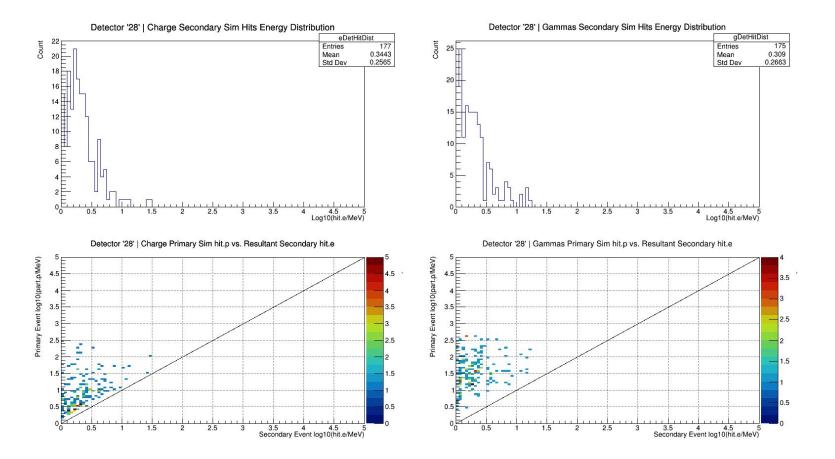
https://www.mcmaster.com/6064





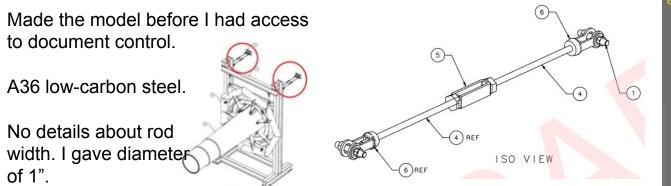
Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

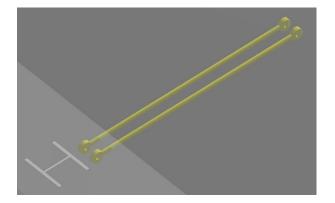
Sens Volume:	Pion Donut Strut	Ends						
Sim Date:	9/15/2023							
Detector #:	9221							
			Pion Donut Stru	ut Ends Unweig	tted By BField			
Total Prim's:	15,000,000,000		Total Sec's:	500,000	(per sens det)			
	Primary Counts		P	Primary Fractional	/I			
Primaries	0	0&1	Primaries	0	0&1			
9221		837	9221		5.58E-08			
(9928 Main	Det) Secondary Co	ounts - 0&1	(9928 MainDe	et) Secondary Fra	ictional - 0&1	(9928 Maj	nDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9221	179	144	9221	3.58E-04	2.88E-04	9221	2.00E-11	1.61E-11
(9911 PMT R	egion) Secondary	Counts - 0&1	(9911 PMT Reg	gion) Secondary Fi	ractional - 0&1	(9911 PMT)	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9221	1169	694	9221	2.34E-03	1.39E-03	9221	1.30E-10	7.75E-11

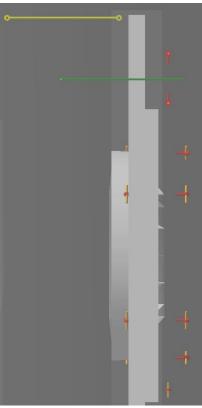

9223 – Pion Donut Strut Bolts

9223: Pion Donut Strut Bolts

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01


1	18							
Sens Volume:	Pion Donut Strut	Bolts						
Sim Date:	9/15/2023		Strut bolts either	6.5" or 8.5" depe	ending on location.			
Detector #:	9223							
			Pion Donut Stru	ut Bolts Unweig	shted By BField			
Total Prim's:	15,000,000,000		Total Sec's:	500,000	(per sens det)			
	Primary Counts		F	Primary Fractiona	d			
Primaries	0	0&1	Primaries	0	0&1			
9223		916	9223		6.11E-08		-	
(9928 Mair	nDet) Secondary Co	ounts - 0&1	(9928 MainDe	et) Secondary Fra	ictional - 0&1	(9928 Ma	inDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9223	177	175	9223	3.54E-04	3.50E-04	9223	2.16E-11	2.14E-11
(9911 PMT R	Region) Secondary	Counts - 0&1	(9911 PMT Reg	gion) Secondary Fi	ractional - 0&1	(9911 PMT	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9223	1056	634	9223	2.11E-03	1.27E-03	9223	1.29E-10	7.74E-11


9223: Pion Donut Strut Bolts



9222 – Pion Donut Tie Rods

19	• -	\ominus	DO NO DRAMN D.SPELL	T SCALE DRAWING	SIZE DWG. NO.	5-05-02-0130	REN
THIR	D ANGLE	PROJECTION	FINISH WOHINE SURFACES		PION DONU	ON DONUT ASSY	
TOLER	SIGNS ARE ANCES ARE IONS DEC	E SPECIFIED IN INCHES. EIMAL ANGLES. 2.1 ±.50 1 ±.01	SE	E PARTS LIST		09005 - 12GeV MC RUCTURES -PION (Newport New Virginie
		SHE 114.5 2009.			S LIST	arectricking	
2 NECOD	1	JL01459		STUD 7/8 - 9 UI		STEEL A36	NOTES
4	2	JL01459	24	HEX NUT 7/8 - 1	9 UNC	STEEL A36	
4	3	JL01459	18	FLAT WASHER 7/	8 X 2.00 OD	STEEL A36	
2	4	JL014584	44	TURNBUCKLE ROD		STEEL A36	
1	5	JL01458	34	TURNBUCKLE .88		STEEL A36	
2	6	JL01480	98	CLEVIS #2.5 X	1 1/4 GRIP	STEEL A36	

9222: Pion Donut Tie Rods

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

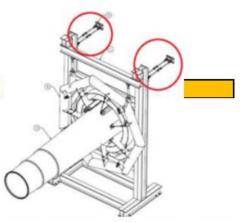
With depolarization considerations, reduce by a factor of ¼, and these become 'tolerable'.

Unweighted By BField

Detector #:	9222				
			Pion Donut [Wall Suppo	vrtl Tie Rode I	Inweighted By
				itj në Kous - K	Shweighted by L
Total Prim's:	10,000,000,000		Total Sec's:	500,000	(per sens det)
	Primary Counts		Pri	mary Fractiona	1
Primaries	0	0&1	Primaries	0	0&1
9222		1355	9222		1.36E-07

(9928 Main	Det) Secondary C	ounts - 0&1
Secondaries	Electrons	Gammas
9222	48	9

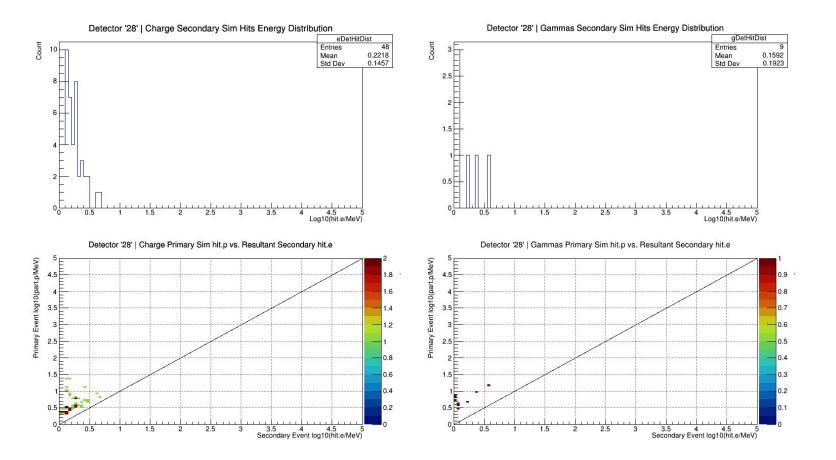
Sens Volume: Pion Donut [Wall Support] Tie Rod

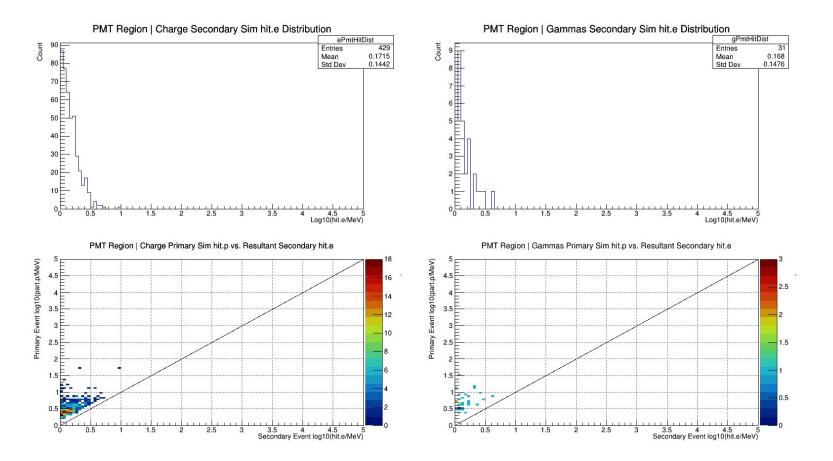

Sim Date: 9/15/2023

(9911 PMT Re	egion) Secondary	Counts - 0&1
Secondaries	Electrons	Gammas
9222	429	31

Pr	imary Fraction	nal
Primaries	0	0&1
9222		1.36E-07

(9928 MainD	et) Secondary Fra	ctional - 0&1
Secondaries	Electrons	Gammas
9222	9.60E-05	1.80E-05


(9911 PMT Reg	ion) Secondary F	ractional - 0&1
Secondaries	Electrons	Gammas
9222	8.58E-04	6.20E-05

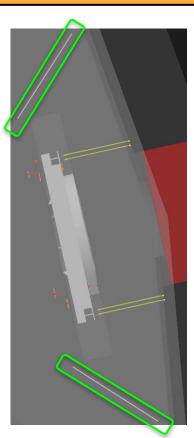

(9928 MainDet) Total Fractional - 0&1				
Electrons	Gammas			
9222 1.30E-11				
	Electrons			

(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9222	1.16E-10	8.40E-12			

9222: Pion Donut Tie Rods

9222: Pion Donut Tie Rods

9224 – Pion Donut Diag Supps


Diagonal support's for Pion Donut assembly placed per specs from Cip

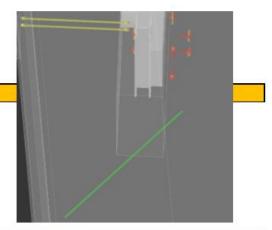
200" above floor

Starting at 90" in x-position and move out at 45*deg angle off beamline and continue until wall.

Starting z-position should at the showermax.

Supports outlined in green.

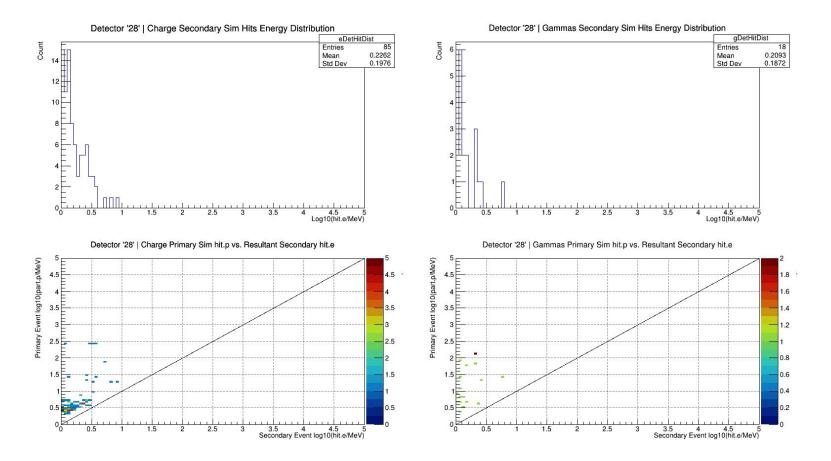
Probably could have made it closer to the wall. I shifted in forward but forgot to increase length.

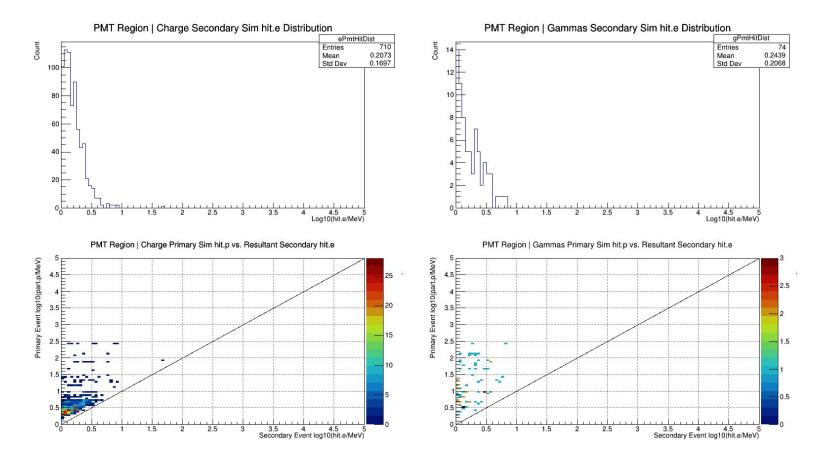

This is not a significant difference.

 \Rightarrow I am presuming that these will be made out of the same A36 Steel that the Tie Rods will be made out of. It is not clear to me exactly what this material is.

9224: Pion Donut Diag Supports

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01


			Pion Donut Diagonal Supports		Sens Volume:	
	mage to side.	0/15/2023 Green volume in image to side.				
				9224	Detector #:	
veighted By BFi	l Supports Unw	Pion Donut Diagonal				
(per sens det)	500,000	Total Sec's:	 	15,000,000,000	Total Prim's:	
	rimary Fractional	Pr		Primary Counts	76	
0&1	0	Primaries	0&1	0	Primaries	
3.51E-08		9224	526		9224	
ctional - 0&1	t) Secondary Frac	(9928 MainDet	ounts - 0&1	Det) Secondary Co	(9928 Main	
Gammas	Electrons	Secondaries	Gammas	Electrons	Secondaries	
3.60E-05	1.70E-04	9224	18	85	9224	
actional - 0&1	on) Secondary Fr	(9911 PMT Regio	Counts - 0&1	egion) Secondary	(9911 PMT R	
Gammas	Electrons	Secondaries	Gammas	Electrons	Secondaries	
1.48E-04	1.42E-03	9224	74	710	9224	


(9928 MainDet) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9224	5.96E-12	1.26E-12			

(9911 PMT Region) Total Fractional - 0&1				
Secondaries	Electrons	Gammas		
9224	4.98E-11	5.19E-12		

9224: Pion Donut Diagonal Supports

9224: Pion Donut Diagonal Supports

Takeaway

Comments

Difference from Previous:

- Change in modeling of the strut ends to 2" rather than 6" has decreased background by about 33%. Which makes sense as the upstream faces were responsible for the bulk of backgrounds.
- Addition of the Grade 8 bolts, though, adds previous gains (above bullet point) right back in.
- Previous simulation for the tie rods were just ends, but it looks like they will be completely made of A36 steel. This takes us from 'it's okay' territory to 'not too comfortable' territory.

Materials:

- It would be nice to get some additional information on the Grade 8 steel. I've seen this reference as medium-carbon steel.
- Same goes for the A36 which I've seen referenced as low-carbon.
- At this point, I'm just considering them to all be 'carbon steel' and subject to our 10⁻¹¹ ferrous background limit

Summing all of this up under the hopefully overly-conservative assumption that the all of them share the same susceptibility.

This leaves us at $6(10^{-11})$... taking off a factor of 3 for depolarization and that still has us at $2(10^{-11})$.

ים ווכ	JIIULK	egion			here.	Factor Reduction???	
Ferrous Volume	Volume Common Name	Ferrous Material	Background Tolerance	Main Det Charges	Main Det Gammas	PMT Region Charges	PMT Region Gammas
9221	Pion Donut Strut Ends	Carbon Steel	1e-11	2.00e-11	1.61e-11 1.61e-13	1.30e-10	7.75e-11
9222	Pion Donut Tie Rods	Steel A36 [Low-Carbon]	1e-11	1.30e-11	2.44e-12 2.44e-14	1.16e-10	8.40e-12
9223	Pion Donut Strut Fasteners	Grade 8 Med-Carbon ???	1e-11	2.16e-11	2.14e-11 2.14e-13	1.29e-10	7.74e-11
9224	Pion Donut Diagonal Supports	Steel A36 [Low-Carbon]	1e-11	5.96e-12	1.26e-12 1.26e-14	4.98e-11	5.19e-12

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Summary of Pion Donut Region

Photon PMT region efficiency in boundary quartz gives overmodeled.