Ferrous Materials:

HRS Steel Track Rings

Eric King Updated:

June 12th, 2023

Geometry incorporated per specs from Kent's spring semester student who worked on the project.

r _{min} (mm)	r _{max} (mm)	Z _{full} (mm)
9360	10360	30
16550	17550	30

Since these remain an area of concern I may look at them more in detail than usual.

Primary Hits

This is more or less just for my curiosity.

Magenta is rough location of the barite wall which should extend from x=[-2300,2300]

In practice much of this stuff should be blocked.

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

I don't see these as necessarily problematic.

Total Sec's:

I'm unsure why they were previously... Wall size issue maybe? idk.

HRS Steel Tracks -- Unweighted By BField

|--|

Sens Volume: HRS Steel Tracks

Sim Date: 5/30/2023

Detector #: 9000

Primary Counts					
Primaries	0	0&1			
9000		15876			

(9928 MainDet) Secondary Counts - 0&1					
Secondaries Electrons Gammas					
9000	1	10			

(9911 PMT Region) Secondary Counts - 0&1						
Secondaries Electrons Gammas						
9000	13	33				

		Second Se
Pr	imary Fraction	nal
Primaries	0	0&1
9000		1.59E-06

500,000 (per sens det)

(9928 MainDe	et) Secondary Fra	ctional - 0&1					
Secondaries Electrons Gamma							
9000	2.00E-06	2.00E-05					

(9911 PMT Region) Secondary Fractional - 0&1					
Secondaries Electrons Gammas					
9000	2.60E-05	6.60E-05			

(9928 MainDet) Total Fractional - 0&1						
Secondaries Electrons Gammas						
9000	3.18E-12	3.18E-11				

	(9911 PMT Region) Total Fractional - 0&1					
Secondaries Electrons Gamm						
	9000	4.13E-11	1.05E-10			

part.vx:part.vz {hit.det==9911}

9000 – HRS Steel Tracks

Hits pass from wall sides through wall center.

If we wanted we could eliminate this with some shielding.

- One Pb brick 2" thick is about 9 rad lengths.
 - 1" sheets for ground cover in areas of concern???
 - Aluminum rad length is ~9cm just not practical to get meaningful shielding.
- Another thought is shielding walls of Pb bricks to block both barite-wall rail ferrous backgrounds and this.
- I think thin Pb sheets are better although idk if that will necessarily fly with the lab safety.

Atomic and nuclea	ar properties	s of alumi	num	(Al)	Atomic and nuclea	ar prop	erties of l	ead (P	'b)
Quantity	Value	Units	Value	Units	Quantity	Value	Units	Value	Units
Atomic number	13				Atomic number	82			
Atomic mass	26.9815385(7)	g mol-1			Atomic mass	207.2(1)	g mol ⁻¹		
Density	2.699	g cm ⁻³			Density	11.35	g cm ⁻³		
Mean excitation energy	166.0	eV			Mean excitation energy	823.0	eV		
Minimum ionization	1.615	MeV g ⁻¹ cm ²	4.358	MeV cm ⁻¹	Minimum ionization	1.122	MeV g ⁻¹ cm ²	12.74	MeV cm ⁻¹
Nuclear interaction length	107.2	g cm ⁻²	39.70	cm	Nuclear interaction length	199.6	g cm ⁻²	17.59	cm
Nuclear collision length	69.7	g cm ⁻²	25.81	cm	Nuclear collision length	114.1	g cm ⁻²	10.05	cm
Pion interaction length	136.6	g cm ⁻²	50.62	cm	Pion interaction length	225.9	g cm ⁻²	19.90	cm
Pion collision length	95.6	g cm ⁻²	35.41	cm	Pion collision length	137.3	g cm ⁻²	12.10	cm
Radiation length	24.01	g cm ⁻²	8.897	cm	Radiation length	6.37	g cm ⁻²	0.5612	cm
Critical energy	42.70	MeV (for e)	41.48	MeV (for e ⁺)	Critical energy	7.43	MeV (for e)	7.16	MeV (for e
Muon critical energy	612.	GeV			Muon critical energy	141.	GeV		
Molière radius	11.93	g cm ⁻²	4.419	cm	Molière radius	18.18	g cm ⁻²	1.602	cm
Plasma energy $\hbar \omega_p$	32.86	eV			Plasma energy $\hbar \omega_p$	61.07	eV		
Melting point	933.5	K	660.3	С	Melting point	600.6	K	327.5	С
Boiling point @ 1 atm	2792.	K	2519.	С	Boiling point @ 1 atm	2022.	K	1749.	С

