Ferrous Materials:

GEM Rotator

Eric King

Last Updated:

11-1-2023

Broad Overview

The GEM Rotator has the following currently-identified ferrous elements.

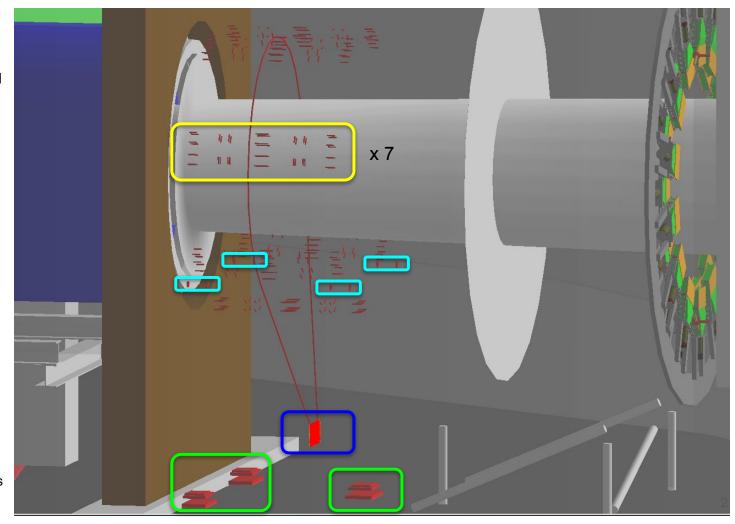
Roller bearings (cyan)

 General doc found for SKF says material is 100Cr6 [carbon steel]

Floor locks (green)

 Stainless & Carbon Steel, Connects are also carbon steel.

Motor (blue)


 Material specifics unknown, assume full magnetization 8%

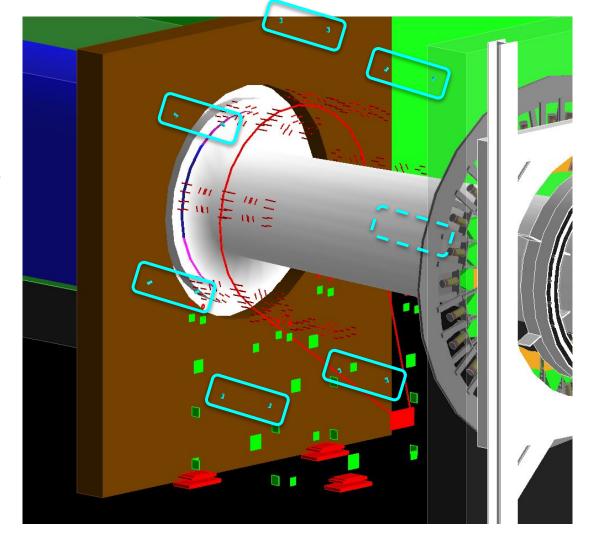
Chain (long thing)

 Is overmodeled, SS316

Fasteners (yellow)

 SS316 [wrongly listed as Grade 5 in previous PDF version]

Broad Overview (Cont'd)


The GEM Rotator items added since previous slide now include:

Stepper Motor (cyan)

 2 motors per septant so 14 total; magnetic cores modeled (reasonably well for first pass, see if GEM team has any more details); fully magnetized material.

T-Nut Fasteners (Green Squares)

 Toy geometry; accurate mass spread over regions of fastener coverage; represents about 50% of fastener areas; SS-304

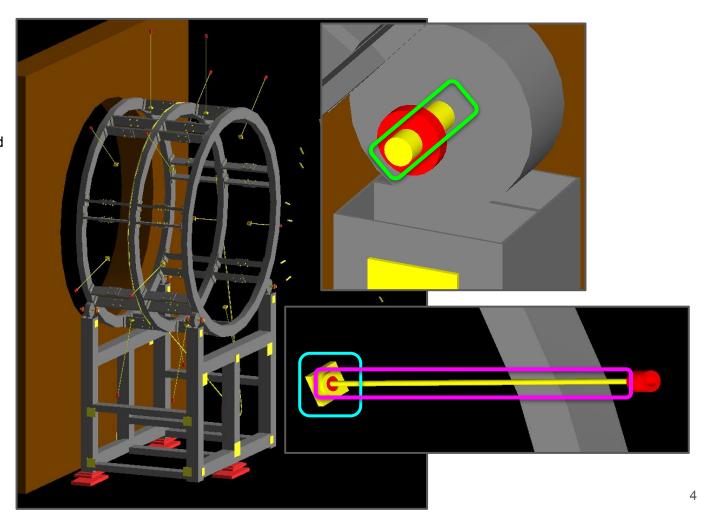
Broad Overview (Cont'd)

The GEM Rotator items added since previous slide now include:

Wheel Pins (Green)

 Want to know if SS would be a problem.

Stepper Rods (Magenta)


Made of SS

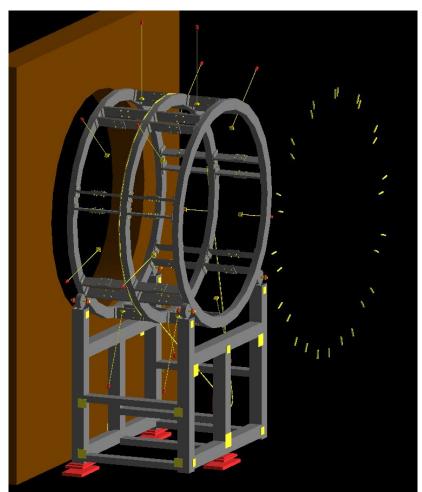
Stepper Bearings (Red geometry in cyan box)

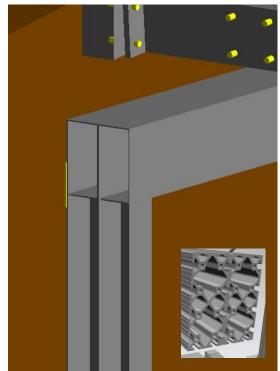
Made of carbon steel.

Stepper Bearing Housing (Yellow geometry in cyan box)

Made of SS

Broad Overview (Cont'd)

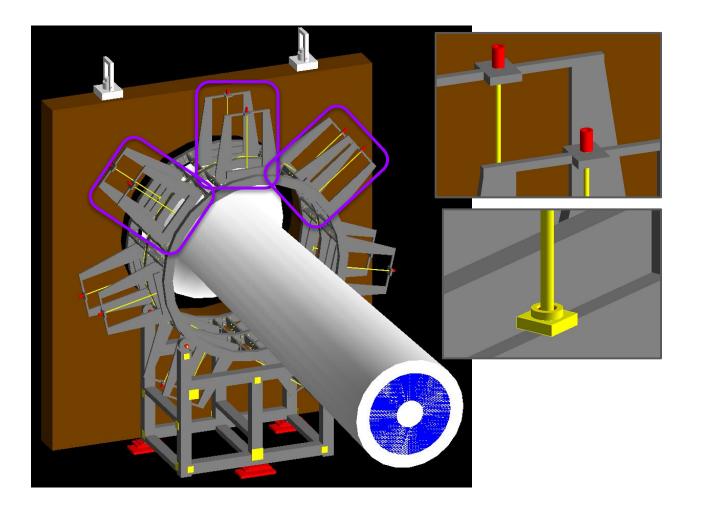

Adding Al mass:


- Frame mass will scatter primaries
- Frame mass will have some degree of attenuation on secondaries coming from certain components.

Largest components of frame mass added in.

- Frame mass/length = model... double check this.
- Wheels solid? Can't tell from JT.

THIS IS NOT THE COMPLETE MASS. I WANTED TO GET ~50% OF IT IN THE MODEL DISTRIBUTED AROUND.



12/12/2023

GEM plane frames added to rotator wheel.

Not exact

Explicitly added for concerns about ferrous backgrounds from stepper motors and stepper drive bearings but all results have been updated.

Note: Materials Permeability and Susceptibility

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Study done for CERN at Los Alamos in the 1990s

MAGNETIC PERMEABILITY OF STAINLESS STEEL FOR USE IN ACCELERATOR BEAM TRANSPORT SYSTEMS*

IV. CONCLUSIONS

The use of 310 with 310 weld rod or 20Cb-3 with 20Cb-3 weld rod appears to produce welds with the required permeability of not greater than 1.02, without the necessity of high-temperature solution annealing of large welded components. The availability of two metal/weld rod combinations allows the fabrication process and material to be selected on basis of cost of fabrication and availability of materials.

Table 1 - Magnetic Permeability - 11

Material	As Received	After Anneal [1]	After El'ectropolish	Weld Rod	After TIG Welding	Post-Weld Anneal 2
304L	1.05-1.1	1.02-1.05	<1.01	E/ER 309	2.2-2.5	1.4+
316L [3]	< 1.01	<1.01	<1.01	E/ER 316	1.6	1.10-
				E/ER 316L	1.6	1 02-1.05
				E/ER 316L [4]	1.4 (4)	1.02-1.05
				E/ER 310	1.02-1.05	< 1.01
20Cb3	1.01-1.02	1.02-1.05	<1.01	E/ER20Cb3	<1.01	<1.01
310	< 1.01	< 1.01	<1.01	E/ER 310	<1.01	<1.01
Nitronic 33	<1.01	1.02-1.05	< 1.01	NIT33	1.1	< 1.01
Nitronic 40	<1.01	<1.01	<1.01	NIT40	1.1-1.15	1.02 +
317LN	< 1.01	< 1.01	<1.01	E/ER 317	1.2-1.4	<1.01

- 1. Anneal conditions: 1800° for 75 min on 20Cb-3, 1980° for 40 min on all other types.
- Post-weld anneal conditions: 1825° for 60 min in nitrogen at a pressure of approximately 4x10-5 torr on all samples.
- The same 316L coupons were welded with four different weld rods.
 Arc welded with coated rod.

Note: Depolarization Considerations

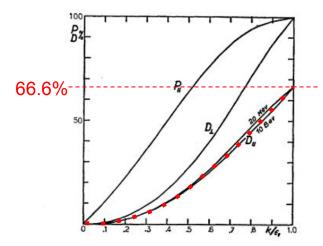


Fig. 5. Circular polarization of bremsstrahlung beam from longitudinally polarized electrons,

$$P_{II} = P(\mathbf{p}_1, \boldsymbol{\zeta}_{1 \text{ long}}, \mathbf{e}_{\text{circ}}),$$

and depolarization of longitudinally polarized electrons,

$$D_{\rm II} = D(\mathbf{p}_{\rm i}, \boldsymbol{\zeta}_{\rm 1\ long})$$

and of transversely polarized electrons, $D_{\rm I} = D({\bf p}_{\rm I}, {\bf \zeta}_{\rm I~trans})$. Coulomb and screening effects are included. The curves for $P_{\rm II}$ and $D_{\rm I}$ are valid for all elements and for any incident electron energy above ≈ 20 Mev. $D_{\rm II}$ depends slightly on the electron energy; curves are shown for incident electron energies 20 Mev and 10 Bev.

Photon and Electron Polarization in High-Energy Bremsstrahlung and Pair Production with Screening*

HAAKON OLSEN, Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway

AND

L. C. Maximon,† Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway and Department of Theoretical Physics,
The University, Manchester, England

(Received November 24, 1958)

I've highlighted the depolarization of longitudinally polarized electrons line in red.

Presuming bremsstrahlung losses a 100MeV electron from our primary ferrous simulations will have a depolarization of 66.6%

We use this 2/3 polarization loss figure when needing to account for polarization losses.

9300 – GEM Rotator Roller Bearings

Carbon Steel roller bearings.

1" ID 2.25" OD

Modeled as cylinder with spec'd ID and OD with a z-thickness enough to give the ring a mass of ~0.22kg (0.48 lb in specs).

Used G4-STAINLESS_STEEL in remoll for simulation.

https://www.skf.com/au/products/rollin g-bearings/roller-bearings/tapered-roll er-bearings/single-row-tapered-roller-b earings/productid-15578%2F15520

9300 – GEM Rotator Roller Bearings (cont'd)

https://www.skf.com/au/products/rollin g-bearings/roller-bearings/tapered-roll er-bearings/single-row-tapered-roller-b earings/productid-15578%2F15520

Material information sourced from SKF website.

(1) Confirm with Chandika specifics about the material for this specific. It's possible that I missed specific component materials in listing on the website. Other than that all I found was general information about SKF-made components.

Bearing rings

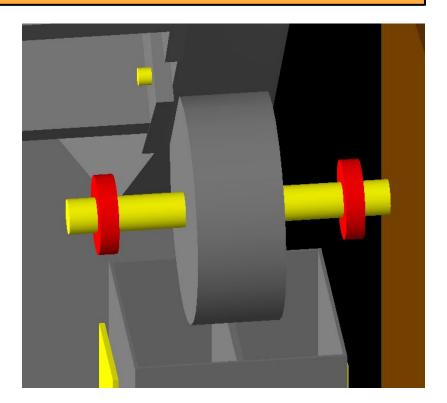
The pressure at the rolling contact area and the cyclic overrolling creates fatigue in the bearing rings when the bearing is in operation. To cope with such fatigue, rings that are made of steel must be hardened.

The standard steel for bearing rings and washers is 100Cr6, a steel containing approximately 1% carbon and 1,5% chromium.

SKF bearing rings and washers are made of steel in accordance with SKF specifications. They cover all aspects that are relevant to providing a long service life for the bearing. Depending on specific requirements, SKF uses stainless steels or high-temperature steels.

Rolling elements

The rolling elements (balls or rollers) transfer the load between inner and outer rings. Typically, the same steel is used for rolling elements as for bearing rings and washers. When required, rolling elements can be made of ceramic material. Bearings containing ceramic rolling elements are considered hybrid bearings and are becoming more and more common.


9300 – GEM Rotator Roller Bearings (cont'd)

Previous modeling was just the roller bearings which are red in this screen snip.

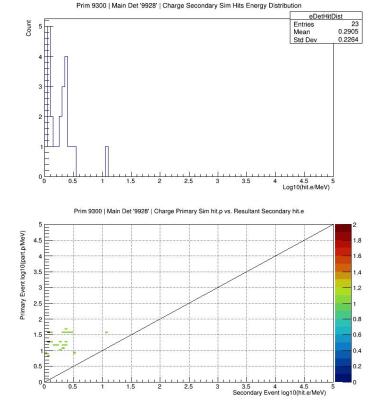
Added is the wheel structure made of aluminum (gray) and wheel pin (yellow) which is stainless steel (modeled as such on request).

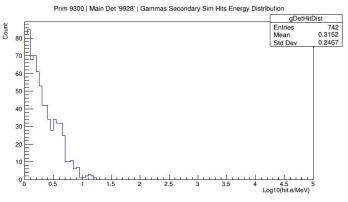
The additional materials should provide some shielding of primaries and attenuation of secondaries.

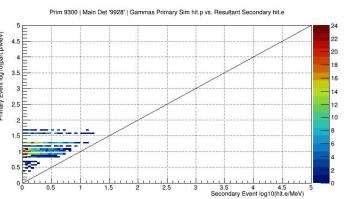
Note: There is some additional aluminum structure such as the plates which attach to the legs and hold the pins which are not modeled here.

9300: GEM Rotator Roller Bearings (ferrous material only)

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

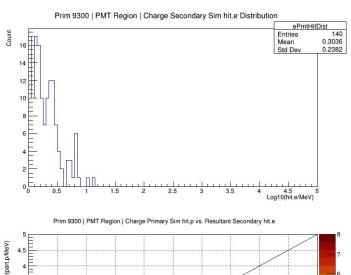

- Sens Volume: GEM Rotator Wheel Bearings *Simulation with wheel and frame mass (G4_Al) Sim Date: 12/13/2023 *Added GEM plane frame (12/13/2023) Detector #: 9300 GEM Rotator Wheel Bearings - Unweighted By BField Total Sec's: 500,000 (per sens det) Total Prim's: 20,000,000,000 **Primary Counts** Primary Fractional 0&1 0&1 Primaries Primaries 9300 1.85E-09 37 9300 (9928 MainDet) Secondary Counts - 0&1 (9928 MainDet) Secondary Fractional - 0&1 Secondaries Secondaries Electrons Gammas Electrons Gammas 9300 23 742 9300 4.60E-05 1.48E-03 (9911 PMT Region) Secondary Counts - 0&1 (9911 PMT Region) Secondary Fractional - 0&1 Secondaries Electrons Gammas Secondaries Electrons Gammas 9300 2.80F-04 4.66F-03 140 2330 9300
- A factor of ~3.5 reduction in the fraction of primary hits.
- Secondary charge hits on the detector are reduced by two order of magnitude.
- It's not immediately clear why this is the case. I could make the SS pins sensitive in the secondary and assign a volume number to the Al structure.
- Nonetheless, I think the results demonstrate that the bearings are 'safe'.

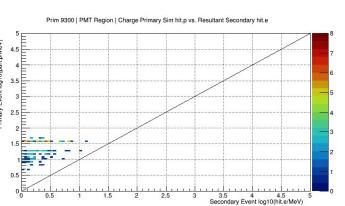

(9928 MainDet) Total Fractional - 0&1				
Secondaries Electrons Gammas				
9300 8.51E-14 2.75E-12				

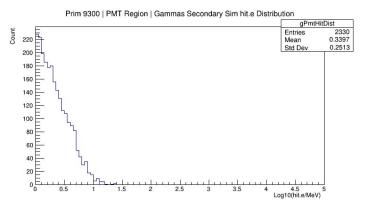

(9911 PMT Region) Total Fractional - 0&1				
Electrons	Gammas			
5.18E-13	8.62E-12			
	Electrons			

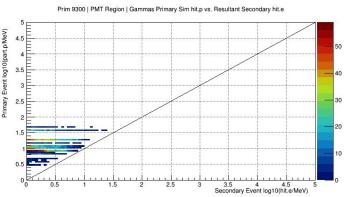
9300: GEM Rotator Roller Bearings

Backgrounds that hit detector '28'

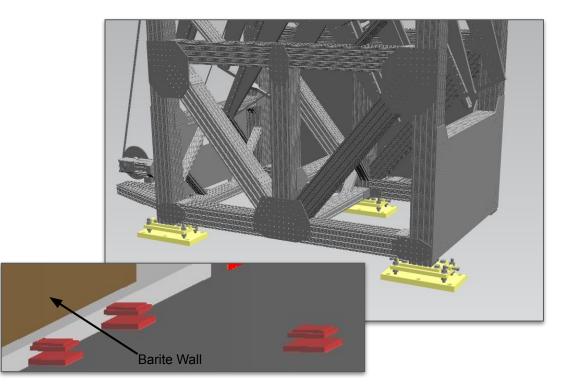







9300: GEM Rotator Roller Bearings

Backgrounds that hit PMT Region



9301 – GEM Rotator Floor Locks

Floor locks built to spec from JT files.

Made of G4_STAINLESS-STEEL in remoll

Placed, in remoll, right behind the floor rail for the barite wall.

9301: GEM Rotator Floor Locks

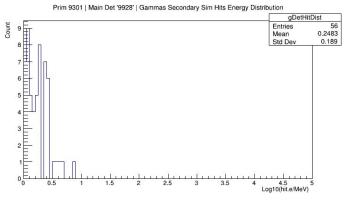
Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

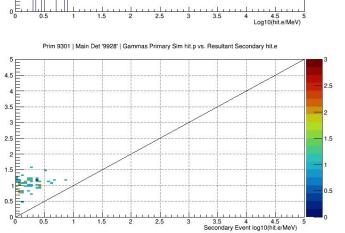
frame mass (G4_AI)	wheel and frame	*Simulation with	GEM Rotator Floor Locks		Sens Volume:
2/13/2023)	*Added GEM plane frame (12/13/2023)		12/13/2023		Sim Date:
W	NEW			9301	Detector #:
Unweighted By BField	or Locks Unwei	GEM Rotator Flo			
00,000 (per sens det)	500,000	Total Sec's:		20,000,000,000	Total Prim's:
ectional	Primary Fractional			Primary Counts	
0&1	0	Primaries	0&1	0	Primaries
7.65E-09		9301	153		9301
ary Fractional - 0&1	et) Secondary Fra	(9928 MainDe	ounts - 0&1	Det) Secondary Co	(9928 Main
ons Gammas	Electrons	Secondaries	Gammas	Electrons	Secondaries
04 1.12E-04	2.36E-04	9301	56	118	9301
idary Fractional - 0&1	ion) Secondary Fr	(9911 PMT Reg	Counts - 0&1	egion) Secondary	(9911 PMT R
ons Gammas	Electrons	Secondaries	Gammas	Electrons	Secondaries
03 5.72E-04	2,37E-03	9301	286	1184	9301

Overall reductions in primaries and secondaries.

While these were previously on the edge of comfortability, they are now within acceptable limits by about an order of magnitude after additional considerations (depolarization, etc.)

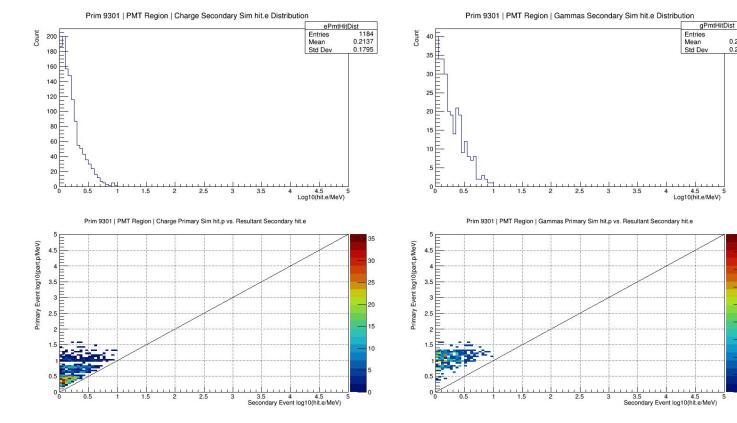
(9928 MainDet) Total Fractional - 0&1					
Secondaries	Secondaries Electrons Gammas				
9301 1.81E-12 8.57E-13					


(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Electrons Gammas				
9301	9301 1.81E-11 4.38E-12				


9301: GEM Rotator Floor Locks

Backgrounds that hit detector '28'

Prim 9301 | Main Det '9928' | Charge Secondary Sim Hits Energy Distribution


9301: GEM Rotator Floor Locks

Backgrounds that hit PMT Region

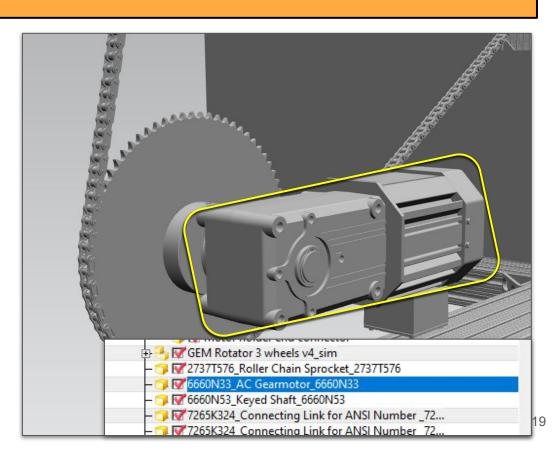
286

0.2704

0.2159

9302 – GEM Rotator Gear Motor

I went with a simple toy model for the GEM Rotator motor at this point.


I could not find information online about a "6660N33" gear motor.

Your search - "6660n33" ac gear motor - did not match any documents.

Suggestions:

So, I looked at similar looking models and many were in the 7-8kg range.

I went with a toy model [rectangle] the width and height of the motor in the JT file and made it thick enough in Z for 7kg of material.

>> *** Fully magnetized material fractional limit per e.o.t. is 10⁻¹² *** <<

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

9302: GEM Rotator Gear Motor

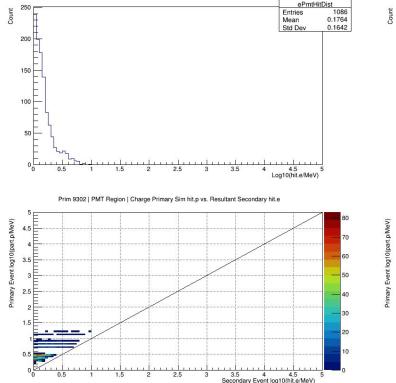
Sens Volume:	GEM Rotator Motor (Toy/Rect 7kg		*Simulation with v	vheel and frame	mass (G4_Al)
Sim Date:	12/13/2023		*Added GEM plan	e frame (12/13/2	2023)
Detector #:	9302				
		GE	M Rotator Motor (Toy,	/Rect 7kg steel) -	Unweighted B
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)
	Primary Counts	9	P	rimary Fractiona	
Primaries	0	0&1	Primaries	0	0&1
9302		24	9302		1.20E-09
(9928 Mair	Det) Secondary Co	unts - 0&1	(9928 MainDe	et) Secondary Fra	ctional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9302	147	45	9302	2.94E-04	9.00E-05
(9911 PMT R	legion) Secondary C	ounts - 0&1	(9911 PMT Regi	ion) Secondary F	ractional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9302	1086	178	9302	2.17E-03	3.56E-04

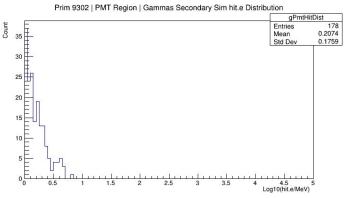
Minor reduction in primary strikes, farther away from frame mass so this makes sense.

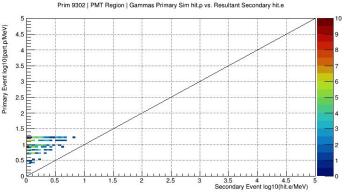
Considerations:

- (1) Depolarization (reduce by 3x)
- (2) Toy model→Right mass/surface area overmodeled

Simulation suggests this is safe.

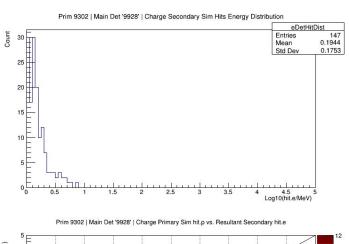

(9928 MainDet) Total Fractional - 0&1					
Secondaries	Secondaries Electrons Gammas				
9302 3.53E-13 1.08E-13					

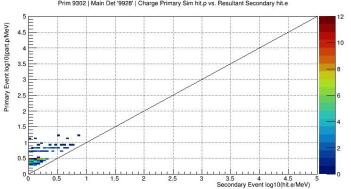

(9911 PMT Region) Total Fractional - 0&1						
Secondaries	Electrons	Gammas				
9302	2.61E-12	4.27E-13				

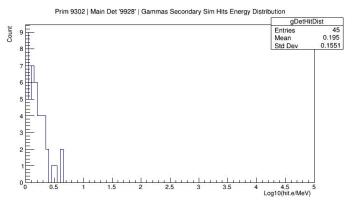

9302: GEM Rotator Gear Motor

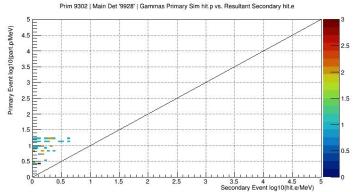
Prim 9302 | PMT Region | Charge Secondary Sim hit.e Distribution

Backgrounds that hit detector '28'

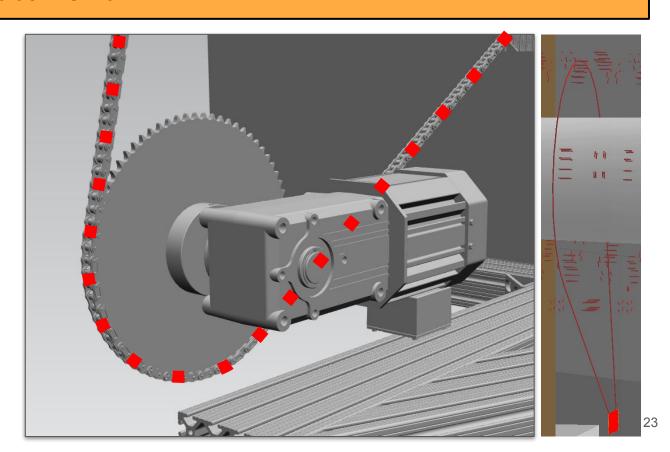







9302: GEM Rotator Gear Motor

Backgrounds that hit PMT Region


9303 - GEM Rotator Chain

12mm high x 10mm deep

Modeled as the perimeter of two circles connected at common tangents with rectangle boxes

Material specified to be SS316

MAKE X/Y Plot for Primaries

9303: GEM Rotator Chain

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rotator Chair	1	*Simulation with wheel and frame mass (G4_Al)				
Sim Date:	12/13/2023	3	*Added GEM plane	*Added GEM plane frame (12/13/2023)			
Detector #:	9303			JEW			
			GEM Rotator C	hain Unweigh	ited By BField		
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)		
	Primary Counts		Primary Fractional				
Primaries	0	0&1	Primaries	0	0&1		
9303		1697	9303		8.49E-08		
(9928 Mai	nDet) Secondary Co	unts - 0&1	(9928 MainDe	t) Secondary Fra	actional - 0&1		
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas		
9303	1075	1430	9303	2.15E-03	2.86E-03		
(9911 PMT F	Region) Secondary C	ounts - 0&1	(9911 PMT Regi	on) Secondary F	ractional - 0&1		
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas		
9303	1683	3777	9303	3.37E-03	7.55E-03		

This fell well-under the tolerable limit previously 10⁻⁷ for SS316.

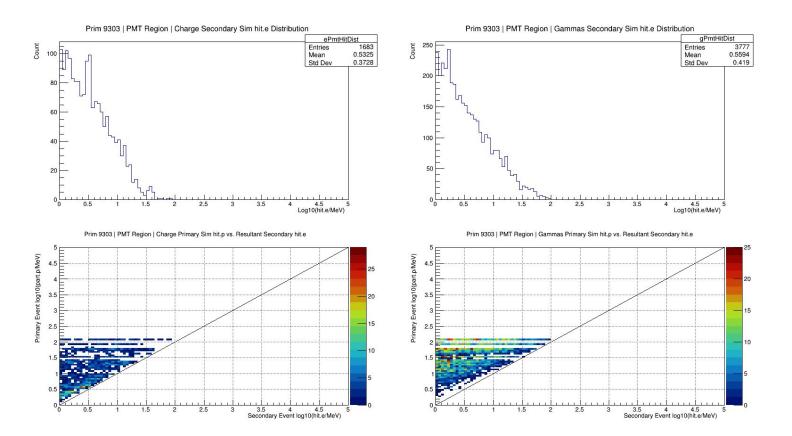
Simulated backgrounds fall by an order of magnitude after the addition of rotator frame mass.

The chain was already over-modeled a bit so we're a good three orders of magnitude under our imposed limit.

(9928 MainDet) Total Fractional - 0&1						
Secondaries Electrons Gammas						
9303	1.82E-10	2.43E-10				

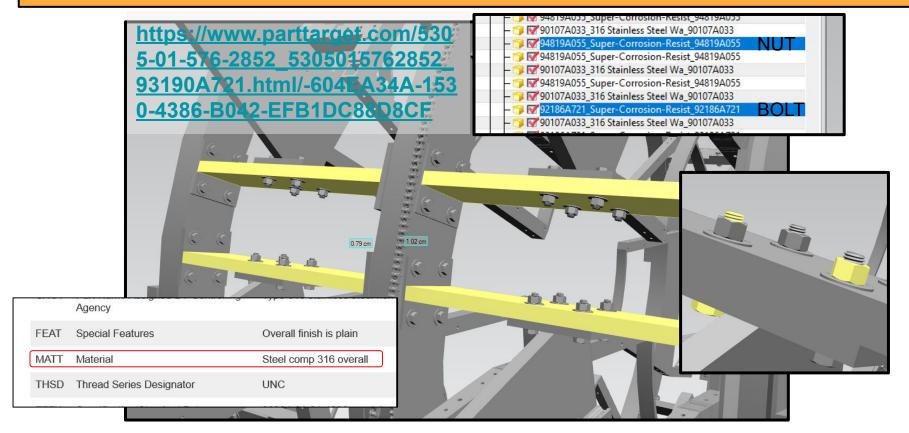
(9911 PMT Region) Total Fractional - 0&1						
Secondaries	Electrons	Gammas				
9303	2.86E-10	6.41E-10				
	The second secon					

9303: GEM Rotator Chain


Backgrounds that hit detector '28'

9303: GEM Rotator Chain

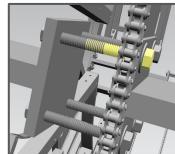
Backgrounds that hit PMT Region


9304 – GEM Rotator Fasteners

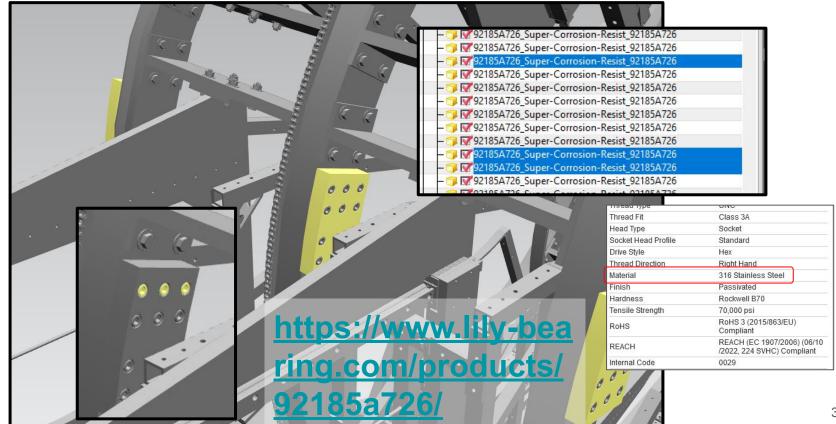
Three types of fasteners. Modeled 2 sets which were the bulk of the material.

Material specified to be SS316

Item specifics on next three slides.


9304 – GEM Rotator Fasteners

9304 - GEM Rotator Fasteners



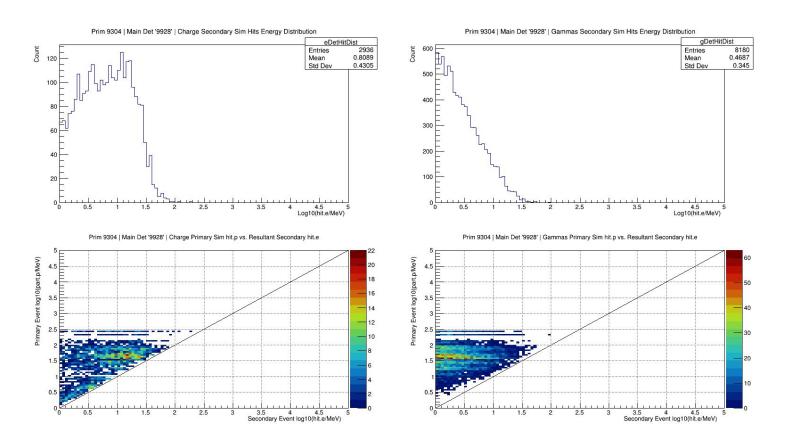
I'll note that the 93190A722 bolt/screw overlaps in the center portion of the frame. I just unioned them together in remoll so they appear as one long continuous piece.

9304: GEM Rotator Fasteners

These weren't in the simulation. I had hit my deadline and figured that we could mass-scale the results if we were concerned about there being an issue.

9304: GEM Rotator Fasteners

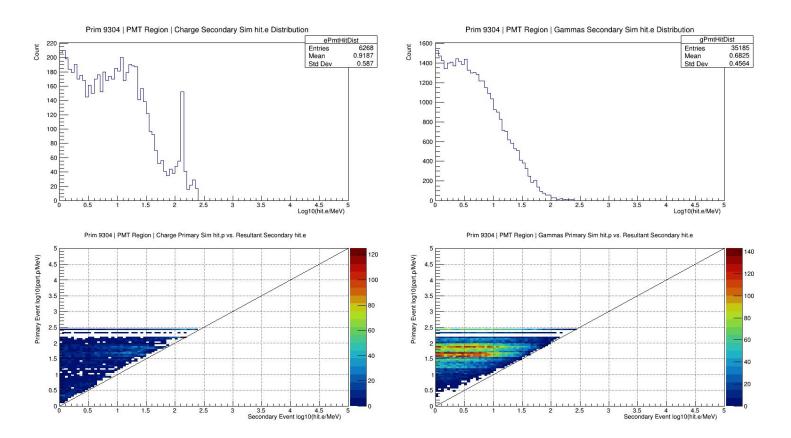
Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01


Sens Volume: GEM Rotator Fasteners *Simulation with wheel and frame mass (G4 Al) *Added GEM plane frame (12/13/2023) Sim Date: 12/13/2023 Detector #: 9304 GEM Rotator Fasteners -- Unweighted By BField Total Prim's: 20,000,000,000 Total Sec's: 500,000 (per sens det) **Primary Counts** Primary Fractional 0&1 0&1 Primaries 0 Primaries 0 9304 9304 1669 8.35E-08 (9928 MainDet) Secondary Counts - 0&1 (9928 MainDet) Secondary Fractional - 0&1 Secondaries Electrons Gammas Secondaries Electrons Gammas 9304 2936 8180 9304 5.87E-03 1.64E-02 (9911 PMT Region) Secondary Counts - 0&1 (9911 PMT Region) Secondary Fractional - 0&1 Secondaries Electrons Secondaries Electrons Gammas Gammas 9304 6268 35185 9304 1.25F-02 7.04F-02

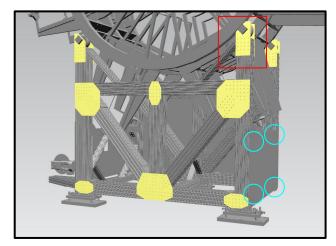
Was fine before... see notes on previous slide.

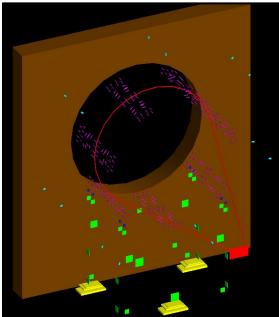
Background rates dropped by an order of magnitude with addition of rotator frame mass.

(9928 MainDet) Total Fractional - 081						
Secondaries	Electrons	Gammas				
9304	4.90E-10	1.37E-09				


(9911 PMT Region) Total Fractional - 08.1						
Secondaries	Electrons	Gammas				
9304	1.05E-09	5.87E-09				

9304: GEM Rotator Fasteners


Backgrounds that hit PMT Region


9306 – GEM Rotator T-Nuts (Toy Geometry)

- T-nuts SS304
 - https://8020.net/3607.html
 - https://8020.net/3678.html
- Modeling all of these is too difficult and likely unnecessary.
 - Modeled SS plates of material with proper masses at locations shown (in image shown).
 - Masses taken from specs from website for one screw/nut pairs.
 - Used 4x4 fastener location (outlined in red) to get a generalized density of material–16 fasteners over about (16cm)² of space.
 - There are a handful of middle fasteners that I did miss.
- Additional areas modeled circled in cyan (done on left and right)

Mass of ~792 t-nut fasteners modeled (one of the areas near the motor was slightly different but I modeled like the other side for ease but otherwise mass is accurate for each area although area may be slightly off).

⇒ This is about 50% of the total t-nut fasteners and represents an accurate spatial distribution of the t-nut fasteners.

^^^ Green squares are the t-nut toy geometry.

9306: GEM T-Nuts (Toy Geometry)

19280 1st GEM:

Y-Center:

2959.1

1st GEM:

TNut	0.027	lbs	0.0594	kg		Nut+Screw	103.4	a		TNUT DIM					locations for the pa
Screw	0.02	lbs	0.044	kg		Density	0.00786	g/mm^3		L	1.113	in	28.2702	mm	CC placed where t
				-3-				350		W	0.638	in	16.2052	mm	SS placed where t-
AdjThick	0.319	in	8.1026	mm	Thickness	Adjustment:	1.45			Th	0.22	in	5.588	mm	fasteners are locate
Patches fo	r TNuts: (F)	ront (B)ack (L	left /R\ight												lasteriers are locate
r decires re	i iiidas. (i)	TOTAL (D)GCK (E	Jere (rejigne						(OPY TO XM	IL MATRIX	(
	GEN	ERAL INFORM	MATION	7	LOC	CAL COORDINA	ATES	GLOBA	L COORDIN	NATES		DIMENSION	VS		*D
PATCH	NUTS	MASS	THICK (mm)	LxW (mm)	XPOS	YPOS	ZPOS	XPOS	YPOS	ZPOS	HLX	HLY	HLZ		*Represents about
F1	20	2068	8.10	180.20	-962.8	224.0	-740.9	-962.8	-2735.1	19115.6	90.099	90.10	4.05		·
F2	66	6824.4	8.10	327.35	0.0	300.2	-740.9	0.0	-2658.9	19115.6	163.674	163.67	4.05		total t-nuts.
F3	20	2068	8.10	180.20	962.8	224.0	-740.9	962.8	-2735.1	19115.6	90.099	90.10	4.05		
F4	47	4859.8	8.10	276.24	-916.2	1298.0	-740.9	-916.2	-1661.1	19115.6	138.120	138.12	4.05		
F5	20	2068	8.10	180.20	0.0	1365.0	-740.9	0.0	-1594.1	19115.6	90.099	90.10	4.05		
F6	47	4859.8	8.10	276.24	916.2	1298.0	-740.9	916.2	-1661.1	19115.6	138.120	138.12	4.05		
F7A	16	1654.4	8.10	161.17	-1020.0	1860.4	-740.9	-1020.0	-1098.7	19115.6	80.587	80.59	4.05		Should be about 16*cm square
F8A	16	1654.4	8.10	161.17	1020.0	1860.4	-740.9	1020.0	-1098.7	19115.6	80.587	80.59	4.05		
F7B	16	1654.4	8.10	161.17	-1020.0	1860.4	-575.8	-1020.0	-1098.7	19280.7	80.587	80.59	4.05		Factor of 145% increase on thickness gets to right'ish coverage
F8B	16	1654.4	8.10	161.17	1020.0	1860.4	-575.8	1020.0	-1098.7	19280.7	80.587	80.59	4.05		which seems right adding in the screw to the thickness of the
B1	20	2068	8.10	180.20	-962.8	224.0	740.9	-962.8	-2735.1	20597.4	90.099	90.10	4.05		TNut, which has a hole anyway.
B2	66	6824.4	8.10	327.35	0.0	300.2	740.9	0.0	-2658.9	20597.4	163.674	163.67	4.05		
B3	20	2068	8.10	180.20	962.8	224.0	740.9	962.8	-2735.1	20597.4	90.099	90.10	4.05		
B4	47	4859.8	8.10	276.24	-916.2	1298.0	740.9	-916.2	-1661.1	20597.4	138.120	138.12	4.05		
B5	20	2068	8.10	180.20	0.0	1365.0	740.9	0.0	-1594.1	20597.4	90.099	90.10	4.05		
B6	47	4859.8	8.10	276.24	916.2	1298.0	740.9	916.2	-1661.1	20597.4	138.120	138.12	4.05		**Modeled each are
B7A	16	1654.4	8.10	161.17	-1020.0	1860.4	740.9	-1020.0	-1098.7	20597.4	80.587	80.59	4.05	4	Widadida dadir ar
B8A B7B	16 16	1654.4 1654.4	8.10 8.10	161.17 161.17	1020.0 -1020.0	1860.4 1860.4	740.9 575.8	1020.0 -1020.0	-1098.7 -1098.7	20597.4	80.587 80.587	80.59 80.59	4.05		square patch so the
B8B	16	1654.4	8.10	161.17	1020.0	1860.4	575.8	1020.0	-1098.7	20432.3	80.587	80.59	4.05		The state of the s
L1	28	2895.2	8.10	213.21	-1102.6	238.9	604.4	-1102.6	-2720.2	20452.5	106.607	106.61	4.05		coverage is centered
L2	28	2895.2	8.10	213.21	-1102.6	238.9	-606.4	-1102.6	-2720.2	19250.1	106.607	106.61	4.05	4	_
L3	28	2895.2	8.10	213.21	-1102.6	831.3	606.4	-1102.6	-2127.8	20462.9	106.607	106.61	4.05	4	correctly but may b
L4	28	2895.2	8.10	213.21	-1102.6	831.3	-606.4	-1102.6	-2127.8	19250.1	106.607	106.61	4.05	v v	Correctly but may b
R1	28	2895.2	8.10	213.21	1102.6	238.9	606.4	1102.6	-2720.2	20462.9	106.607	106.61	4.05	4	off due to shape.
R2	28	2895.2	8.10	213.21	1102.6	238.9	-606.4	1102.6	-2720.2	19250.1	106.607	106.61	4.05	V.	on due to snape.
R3	28	2895.2	8.10	213.21	1102.6	831.3	606.4	1102.6	-2127.8	20462.9	106.607	106.61	4.05	V.	
R4	28	2895.2	8.10	213.21	1102.6	831.3	-606.4	1102.6	-2127.8	19250.1	106.607	106.61	4.05	-	

-576.5

Copy of spreadsheet of locations for the patches of SS placed where t-nut fasteners are located.

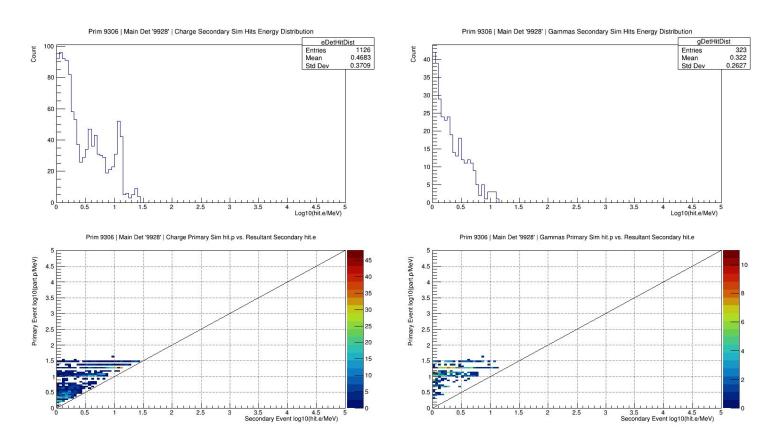
*Represents about 50% of total t-nuts.

**Modeled each area as a square patch so the area of coverage is centered correctly but may be slightly off due to shape.

9306: GEM T-Nuts (Toy Geometry)

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

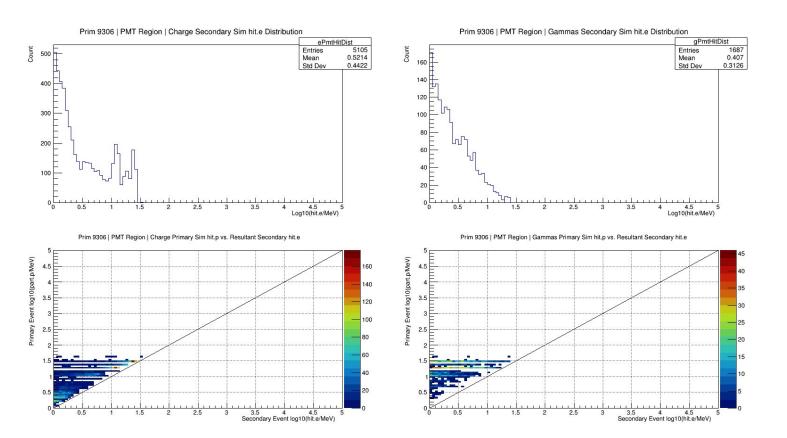
Sens Volume:	GEM Rotator T-Nut	s/Screws	*Simulation with wheel and frame mass (G4_Al)			
Sim Date:	12/13/2023		*Added GEM plan	e frame (12/13/2	2023)	
Detector #:	9306			VEW		
			GEM Rotator T-Nu	ts/Screws Unw	eighted By BFi	
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)	
	Primary Counts	•	Primary Fractional			
Primaries	0	0&1	Primaries	0	0&1	
9306		195	9306		9.75E-09	
(9928 Main	Det) Secondary Co	unts - 0&1	(9928 MainDe	et) Secondary Fra	ctional - 0&1	
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	
9306	1126	323	9306	2.25E-03	6.46E-04	
(9911 PMT R	egion) Secondary C	ounts - 0&1	(9911 PMT Reg	ion) Secondary F	ractional - 0&1	
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	
9306	5105	1687	9306	1.02E-02	3.37E-03	

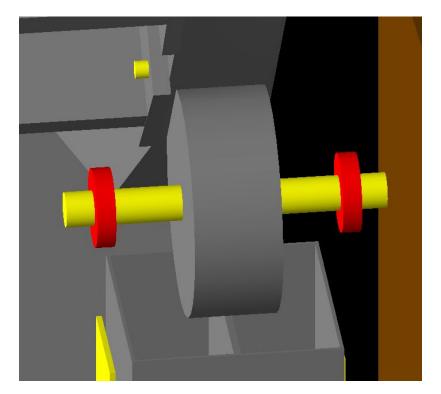

Ferrous background was previously fine with a ferrous background limit of 10⁻⁸

After depolarization considerations we sit ~3 orders of magnitude under out set limit.

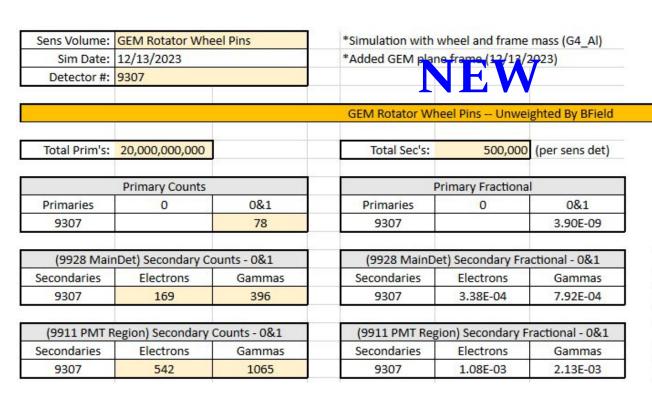
(9928 MainDet) Total Fractional - 0&1						
Secondaries	Gammas					
9306	2.20E-11	6.30E-12				

(9911 PMT Region) Total Fractional - 0&1	
Electrons	Gammas
9.95E-11	3.29E-11
	Electrons


9306: GEM T-Nuts (Toy Geometry)


9306: GEM T-Nuts (Toy Geometry)

Backgrounds that hit PMT Region

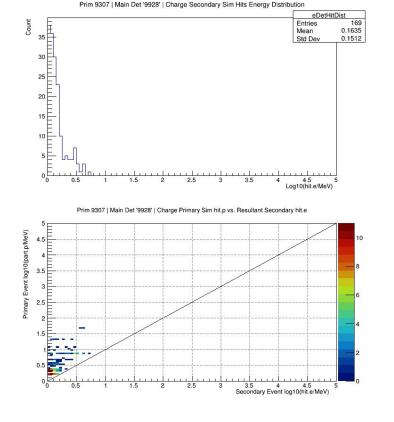

9307 - GEM Rotator Frame Wheel Pins

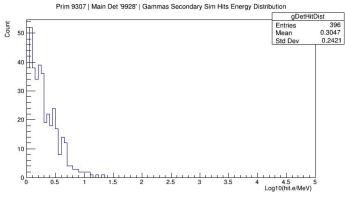
- Wheel pin design is currently for Al 6061-T6 and Chandika asked if we can determine whether or not it would be acceptable to use SS316 for the wheel pin.
- The large yellow cylinder is the wheel pin, the roller can be seen in gray and the bearings in red.

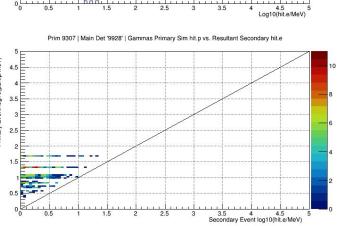
9307: GEM Rot Wheel Pins

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

As a reminder, SS316 falls under the worst quality SS putting the acceptable limit of ferrous backgrounds at 10⁻⁸

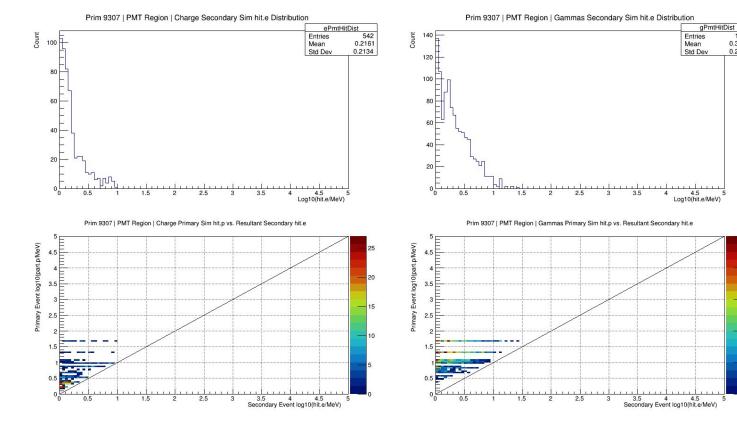

Simulated backgrounds fall four orders of magnitude under that.


It would be fine to make the wheel pins out of SS316 or better.


(9928 MainDet) Total Fractional - 0&1			
Secondaries Electrons Gammas			
9307	1.32E-12	3.09E-12	

(9911 PMT Region) Total Fractional - 0&1			
Electrons	Gammas		
4.23E-12	8.31E-12		
	Electrons		

9307: GEM Rot Wheel Pins

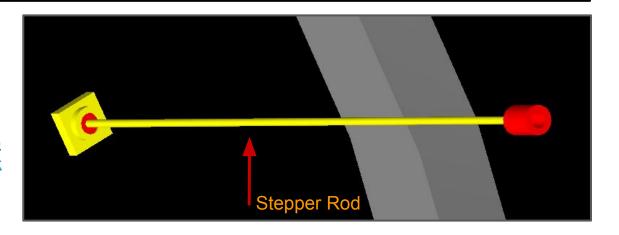

9307: GEM Rot Wheel Pins

Backgrounds that hit PMT Region

1065

0.3394

0.2685



9308 – GEM Rotator Stepper Rods

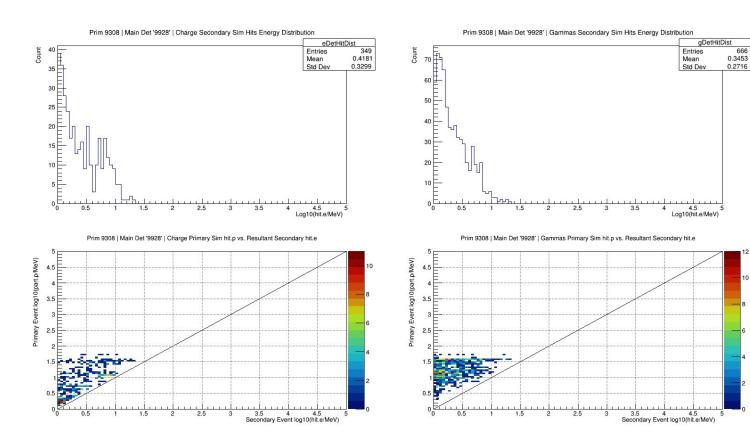
 Material specs from website simply state that the material is stainless steel.

https://www.helixlinear.com/Products/Stepper-Motor-Linear-Actuators-/Stepper-Motor-Linear-Actuator-External-/Stepper-Motor-Linear-Actuator-External-SMA-23E3.2 5-039196~SMA-23E3.25-039196#product-specifications

 Rod is of course long piece of material attached to the motor (on right in image) and bearing (on left in image).

9308: GEM Rot Stepper Rods

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01


*Simulation with wheel and frame mass (G4_AI)			s (G4_AI)
*Added GEM plane frame (12/13/2023))	
· W		V	
ds Unwe	GEM Rotator Step	veight	ed By BFie
500,000	Total Sec's:	0 (per	r sens det)
Fractional	P	al	
0	Primaries	j	0&1
	9308		3.21E-08
ondary Frac	(9928 MainDe	raction	nal - 0&1
ctrons	Secondaries		Gammas
98E-04	9308		1.33E-03
condary Fra	(9911 PMT Regi	Fractio	onal - 0&1
ctrons	Secondaries		Gammas
8E-03	9308		4.74E-03

The stepper motor rods are not problematic. SS316 or better is fine.

(9928 MainDet) Total Fractional - 0&1			
Secondaries Electrons Gammas			
9308 2.24E-11 4.27E-11			

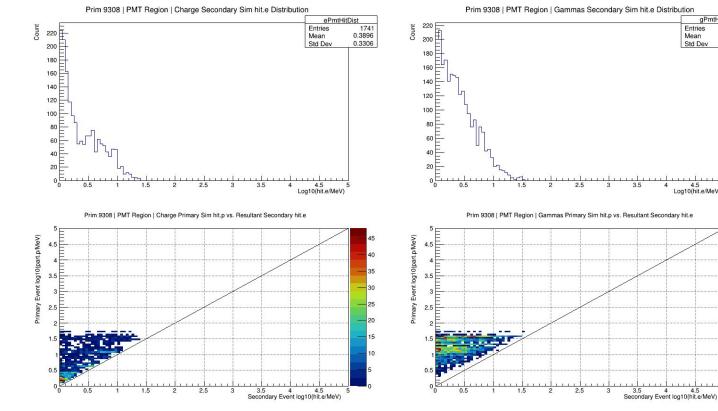
(9911 PMT Region) Total Fractional - 0&1			
Secondaries Electrons Gammas			
9308	1.12E-10	1.52E-10	

9308: GEM Rot Stepper Rods

9308: GEM Rot Stepper Rods

Backgrounds that hit PMT Region

qPmtHitDist

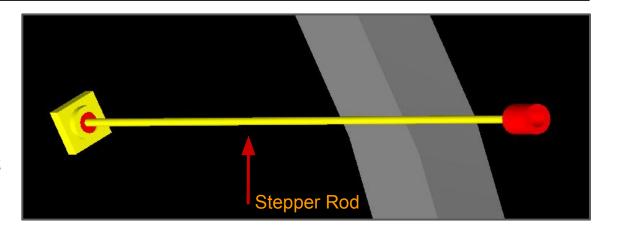

Std Dev

Log10(hit.e/MeV)

2369

0.406

0.3051



 Material specs from website simply state that the material is stainless steel.

https://www.helixlinear.com/Products/Stepper-Motor-Linear-Actuators-/Stepper-Motor-Linear-Actuator-External-/Stepper-Motor-Linear-Actuator-External-SMA-23E3.2 5-039196~SMA-23E3.25-039196#product-specifications

 Rod is of course long piece of material attached to the motor (on right in image) and bearing (on left in image).

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rot Stepper Bearing Housing
Sim Date:	12/13/2023
Detector #:	9310

*Simulation with wheel and frame mass (G4_AI)

The stepper motor rods are not problematic. SS316 or better is fine.

GEM Rot Stepper Bearing Housing -- SEPARATED HOUSING (9310) from BEARING (9390)

Total Prim's: 20,000,000,000

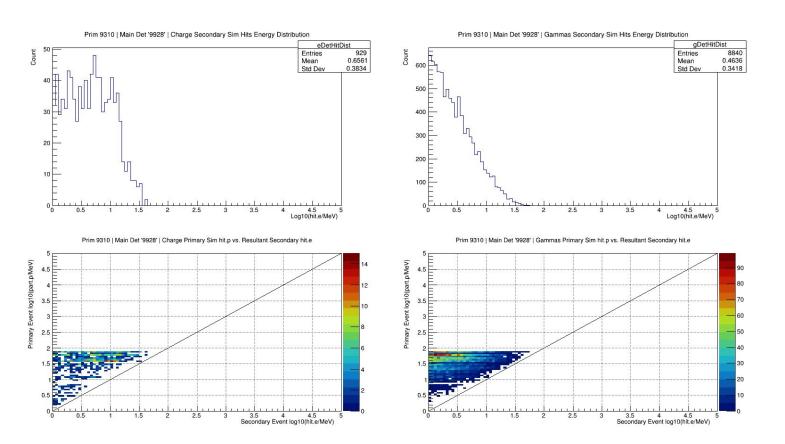
1	Primary Counts			
Primaries	0	0&1		
9310		222		

(9928 MainDet) Secondary Counts - 0&1				
Secondaries Electrons Gammas				
9310	929	8840		

(9911 PMT R	(9911 PMT Region) Secondary Counts - 0&1			
Secondaries	Secondaries Electrons Gammas			
9310	2096	27507		

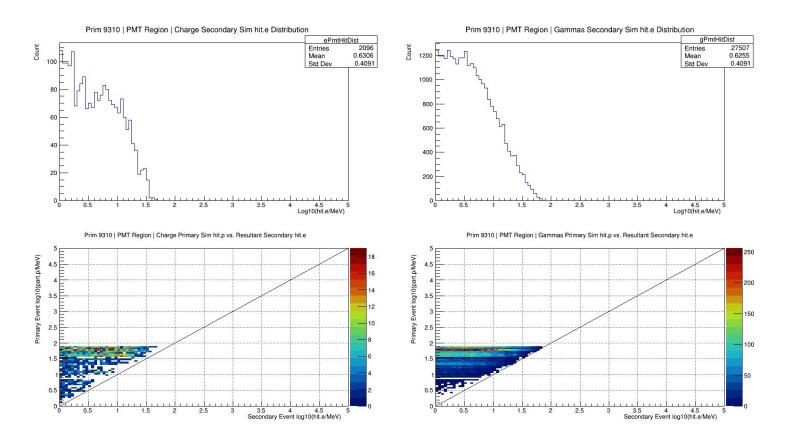
Total Sec's: 500,000 (per sens det)

Primary Fractional			
Primaries	0	0&1	
9310		1.11E-08	


(9928 MainDet) Secondary Fractional - 0&1					
Secondaries	Secondaries Electrons Gamma				
9310	1.86E-03	1.77E-02			

(9911 PMT Region) Secondary Fractional - 0&1				
Secondaries Electrons Gammas				
9310	4.19E-03	5.50E-02		

(9928 Mai	(9928 MainDet) Total Fractional - 0&1			
Secondaries	Electrons	Gammas		
9310	2.06E-11	1.96E-10		


(9911 PMT F	T Region) Total Fractional - 0&1		
Secondaries	Electrons	Gammas	
9310	4.65E-11	6.11E-10	

^{*}Added GEM plane frame (12/13/2023)

Backgrounds that hit PMT Region

Summary

and meeting comments/notes

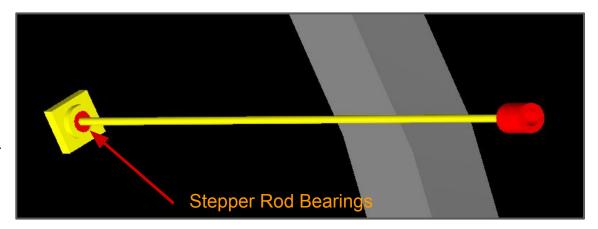
(Updated) Simulation Summary & Comments

Ferrous Detector	Ferrous Volume Common Name	Material(s)	Ferrous BG ¹ Limit [per e.o.t.]	OLD Main Det Sim BG ¹ [per e.o.t]	NEW Main Det Sim BG ¹ [per e.o.t]	Comment
9300	Roller Bearings	100Cr6 [Carbon Steel]	10 ⁻¹¹	< 2(10 ⁻¹¹)	~8(10 ⁻¹⁴)	Addition of large amounts of wheel materials and <u>stainless</u> <u>steel</u> wheel pins have reduced the ferrous backgrounds to tolerable limits.
9301	Floor Locks	Carbon Steel and SS	10 ⁻¹¹	~1(10 ⁻¹¹)	~2(10 ⁻¹²)	Addition of wheel materials has dropped this by about a factor of 2 into tolerable range.
9302	Gear Motor	7kg Multiple Materials	10 ⁻¹²	< 1(10 ⁻¹²)	~4(10 ⁻¹³)	Assuming worst material limits we're still under the ferrous BG ¹ limit.
9303	Chain	SS316	10 ⁻⁸	~2(10 ⁻⁹)	~2(10 ⁻¹⁰)	Over-modeled slightly and safely within limits. Depolarization adds further comfort as does shielding and attenuation by GEM Rotator structure.
9304	Bolt Fasteners	SS316	10 ⁻⁸	~4(10 ⁻⁹)	~5(10 ⁻¹⁰)	As expected, addition of wheel materials reduced backgrounds further. Bolt fasteners are not a concern.
9305	Stepper Motors	[™] SUPER	CEDED B	Y RESUL	TS IN DC	As modeled, with depolarization considerations we are down to our multiplication considerations.

¹BG=Background

Simulation Summary & Comments (Cont'd)

Ferrous Detector	Ferrous Volume Common Name	Material(s)	Ferrous BG ¹ Limit [per e.o.t.]	OLD Main Det Sim BG ¹ [per e.o.t]	NEW Main Det Sim BG ¹ [per e.o.t]	Comment
9306	T-Nut Fasteners	SS304	10 ⁻⁸	~2(10 ⁻¹⁰)	2(10 ⁻¹¹)	Model result was $\sim 2(10^{-11})$, doubling to account for unmodeled mass we come to $< 4(10^{-11})$. Assuming that SS-304 is absolute worst quality this is still well below tolerable limits.
9307	Wheel Pins	SS316	10 ⁻⁸	N/A	1(10 ⁻¹²)	More than tolerable to be made of SS316 or better. Chandika uncertain whether or not pins will be Al or SS.
9308	Stepper Rods	SS [Unspecified Type]	10 ⁻⁸	N/A	2(10 ⁻¹¹)	Stepper Rods are fine.
2000	04			V DECLU	1.5(10 ⁻¹⁰)	These are closest to the beamline of any ferrous item in the rotator.
9309	Stepper Bearings	CaSUPER	CEDED B	YKESUL		depoint a series of surprising. Depolarization reduces 3. The poor wheel mass which isn't modeled, but I don't expect a drastic reduction like the wheel bearings.
9310	Stepper Bearing Housing	SS316	10 ⁻⁸	N/A	2(10 ⁻¹⁰)	These are fine.


OLD:

Stepper motor (9305) and stepper drive bearing (9309) results are old.

NEW results in docdb 1185

9309 – GEM Rotator Stepper Bearings

- Chandika informed me that the bearings will be some kind of carbon steel.
- Bearings are surrounded by a stainless steel housing (yellow square).
 - Chandika has been told by the manufacturer that the housing can be made of SS316.

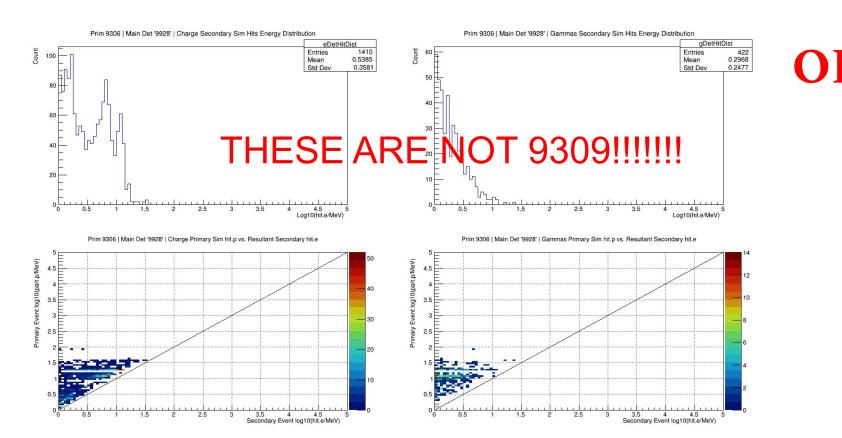
- There is currently no Al frame material (shown in gray) surrounding these put into the ferrous simulation.
 - Additional materials may help attenuate ferrous backgrounds from the steeper bearings as was the case with the wheel bearings although there is less material 'in the way' for stepper bearing ferrous backgrounds.

9309: Gem Rot Stepper Bearings

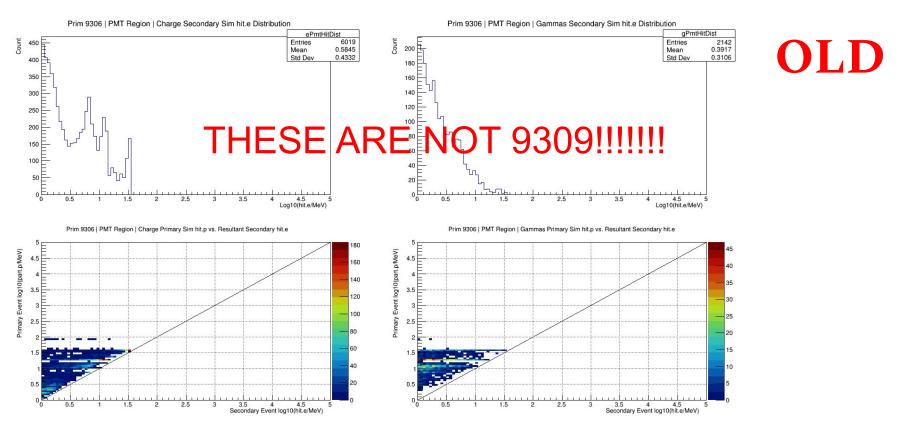
Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume: GEM Rotator Stepper Bearings *Simulation with wheel and frame mass (G4 Al) Sim Date: 10/31/2023 Detector #: 9309 GEM Rotator Stepper Bearings -- Unweighted By BField Total Prim's: 20,000,000,000 Total Sec's: 500,000 (per sens det) **Primary Counts Primary Fractional Primaries** 0&1 **Primaries** 0&1 0 0 9309 1.10E-08 219 9309 (9928 MainDet) Secondary Counts - 0&1 (9928 MainDet) Secondary Fractional - 0&1 Secondaries Electrons Gammas Secondaries Electrons Gammas 9309 6131 8286 9309 1.23E-02 1.66E-02 (9911 PMT Region) Secondary Counts - 0&1 (9911 PMT Region) Secondary Fractional - 0&1 Secondaries **Flectrons** Gammas Secondaries **Flectrons** Gammas 9309 8576 37073 9309 1.72E-02 7.41F-02

Stepper bearings are some type of carbon steel. This puts tolerable ferrous background limits at 10⁻¹¹.


Raw simulation results give ferrous backgrounds at the $\sim 1(10^{-10})$ level.

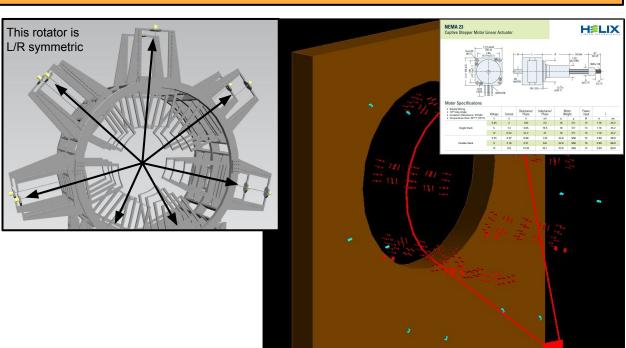
Depolarization considerations bring the raw simulation results to around 5(10⁻¹¹) still above our desired limit.


There are additional materials which can be modeled.

(9928 MainDet) Total Fractional - 0&1			
Electrons	Gammas		
1.34E-10	1.81E-10		
	Electrons		

(9911 PMT Region) Total Fractional - 0&1		
Secondaries	Electrons	Gammas
9309	1.88E-10	8.12E-10

Backgrounds that hit PMT Region


9305 – GEM Rotator Stepper Motors

Stepper motors.

Unsure of particular design of these.

Modeled the ferrous materials as a cylinder (rmin=8.5mm and rmax=15.5mm). Unsure of total material needed so just went with z=45mm; this is probably too much material but figured too much here was better than too little.

*** There could be model improvement with more information from GEM team if the information is on hand or known. I may very well have over-modeled the material in question.

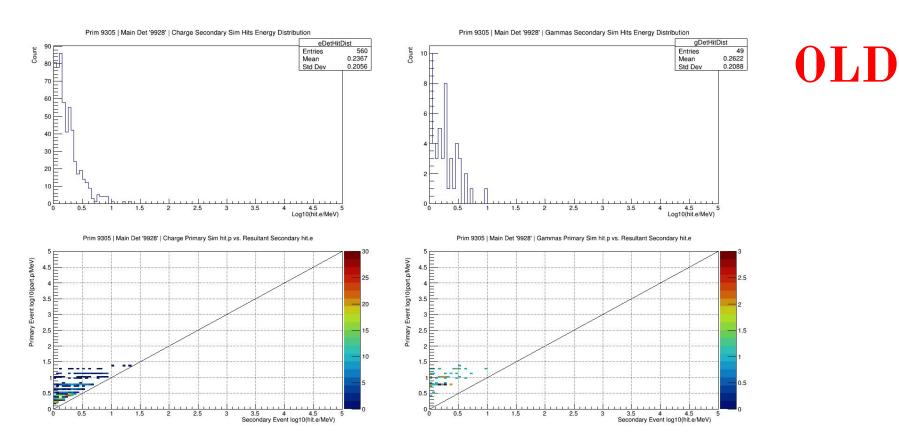
>> *** Fully magnetized material fractional limit per e.o.t. is 10⁻¹² *** <<

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

9305: GEM Stepper Motors

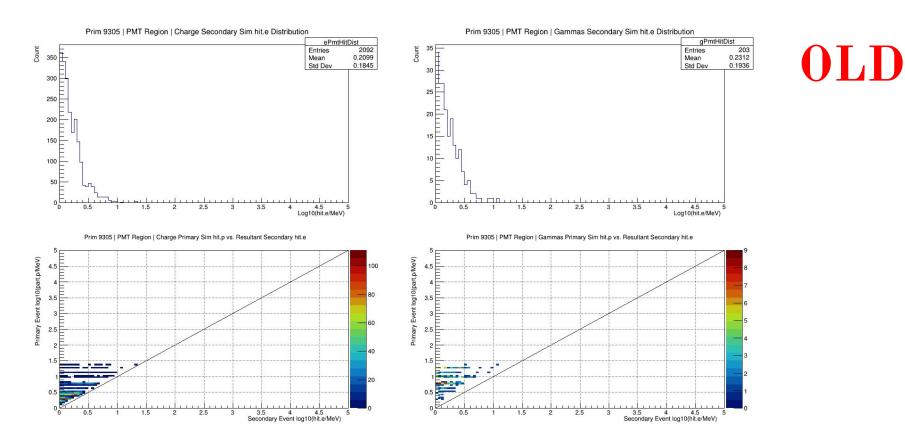
d frame mass (G4_AI)	vheel and f	*Simulation with v	per Motors	GEM Rotator Step	Sens Volume:
and the state of t				10/31/2023	Sim Date:
D				9305	Detector #:
rs Unweighted By BFi	er Motors	GEM Rotator Stepp			
(per sens det)	500	Total Sec's:		20,000,000,000	Total Prim's:
ractional	rimary Frac	Pı		Primary Counts	
0&1	0	Primaries	0&1	0	Primaries
2.85E-09		9305	57		9305
dary Fractional - 0&1	(9928 MainDet) Secondary Fractional - 0&1		(9928 MainDet) Secondary Counts - 0&1		
rons Gammas	Electror	Secondaries	Gammas	Electrons	Secondaries
9.80E-05	1.12E-0	9305	49	560	9305
ondary Fractional - 0&1	on) Second	(9911 PMT Regi	Counts - 0&1	egion) Secondary	(9911 PMT R
rons Gammas	Electror	Secondaries	Gammas	Electrons	Secondaries
E-03 4.06E-04	4.18E-0	9305	203	2092	9305

Ferrous background goal here is a limit of 10-12


As would be expected, there was little change from the previous simulation. These stepper motors are far out with little mass around them.

However, with depolarization considerations we can take off a factor of 3 which puts us at the tolerable limit.

(9928 MainDet) Total Fractional - 0&1		
Secondaries	Electrons	Gammas
9305	3.19E-12	2.79E-13


(9911 PMT Region) Total Fractional - 0&1		
Electrons	Gammas	
1.19E-11	1.16E-12	
	Electrons	

9305: Gem Rotator Stepper Motors

9305: Gem Rotator Stepper Motors

Backgrounds that hit PMT Region

