Ferrous Materials:

GEM Rotator

Eric King

Last Updated:

11-1-2023

Broad Overview

The GEM Rotator has the following currently-identified ferrous elements.

Roller bearings (cyan)

 General doc found for SKF says material is 100Cr6 [carbon steel]

Floor locks (green)

 Stainless & Carbon Steel, Connects are also carbon steel.

Motor (blue)

Material specifics
 unknown, assume full
 magnetization 8%

Chain (long thing)

• Is overmodeled, SS316

Fasteners (yellow)

 SS316 [wrongly listed as Grade 5 in previous PDF version]

Broad Overview (Cont'd)

The GEM Rotator items added since previous slide now include:

Stepper Motor (cyan)

 2 motors per septant so 14 total; magnetic cores modeled (reasonably well for first pass, see if GEM team has any more details); fully magnetized material.

T-Nut Fasteners (Green Squares)

 Toy geometry; accurate mass spread over regions of fastener coverage; represents about 50% of fastener areas; SS-304

Broad Overview (Cont'd)

The GEM Rotator items added since previous slide now include:

Wheel Pins (Green)

• Want to know if SS would be a problem.

Stepper Rods (Magenta)

• Made of SS

Stepper Bearings (Red geometry in cyan box)

• Made of carbon steel.

Stepper Bearing Housing (Yellow geometry in cyan box)

• Made of SS

Broad Overview (Cont'd)

Adding AI mass:

- Frame mass will scatter primaries
- Frame mass will have some degree of attenuation on secondaries coming from certain components.

Largest components of frame mass added in.

- Frame mass/length = model... double check this.
- Wheels solid? Can't tell from JT.

THIS IS NOT THE COMPLETE MASS. I WANTED TO GET ~50% OF IT IN THE MODEL DISTRIBUTED AROUND.

Note: Materials Permeability and Susceptibility

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

As

Received

Study done for CERN at Los Alamos in the 1990s

Material

MAGNETIC PERMEABILITY OF STAINLESS STEEL FOR USE IN ACCELERATOR BEAM TRANSPORT SYSTEMS*

Table 1 - Magnetic Permeability - 11

After

Electropolish

304	HL .	1.05-1.1	1.02-1.05	< 1.01	E/ER 309	2.2-2.5	1.4+	L Y
316L	3]	< 1.01	<1.01	<1.01	E/ER 316	1.6	1.10-	
					E/ER 316L	16	1 02-1.05	L S,
					E/ER 316L [4]	1.4 [4]	1.02-1.05	tt
					E/ER 310	1.02-1.05	<1.01	10
200	53	1.01-1.02	1.02-1.05	<1.01	E/ER20Cb3	<1.01	<1.01	D C
310	0	< 1.01	< 1.01	<1.01	E/ER 310	<1.01	<1.01	do
Nitron	c 33	<1.01	1.02-1.05	< 1.01	NIT33	1.1	< 1.01	
Nitron	ic 40	<1.01	<1.01	<1.01	NIT40	1.1-1.15	1.02 +	191
3171	.N	< 1.01	< 1.01	<1.01	E/ER 317	1.2-1.4	<1.01	E E

Weld

Rod

After TIG

Welding

Post-Weld

Anneal [2]

Don

Post-weld anneal conditions: 1825° for 60 min in nitrogen at a pressure of approximately 2. 4x10-5 torr on all samples.

3 The same 316L coupons were welded with four different weld rods.

After

Anneal [1]

Arc welded with coated rod.

IV. CONCLUSIONS

The use of 310 with 310 weld rod or 20Cb-3 w 20Cb-3 weld rod appears to produce welds with required permeability of not greater than 1. without the necessity of high-temperature solut annealing of large welded components. availability of two metal/weld rod combination allows the fabrication process and material to be selected on basis of cost of fabrication and availability of materials.

Note: Depolarization Considerations

FIG. 5. Circular polarization of bremsstrahlung beam from longitudinally polarized electrons,

 $P_{11} = P(\mathbf{p}_1, \boldsymbol{\zeta}_1 \text{ long}, \mathbf{e}_{\text{circ}}),$

and depolarization of longitudinally polarized electrons,

$$D_{11} = D(\mathbf{p}_1, \boldsymbol{\zeta}_1 \mathbf{long})$$

and of transversely polarized electrons, $D_{\perp} = D(\mathbf{p}_{1}, \zeta_{1 \text{ trans}})$. Coulomb and screening effects are included. The curves for P_{11} and D_{\perp} are valid for all elements and for any incident electron energy above ≈ 20 Mev. D_{11} depends slightly on the electron energy; curves are shown for incident electron energies 20 Mev and 10 Bev.

Photon and Electron Polarization in High-Energy Bremsstrahlung and Pair Production with Screening*

HAAKON OLSEN, Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway

AND

L. C. MAXIMON,[†] Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway and Department of Theoretical Physics, The University, Manchester, England (Received November 24, 1958)

I've highlighted the depolarization of longitudinally polarized electrons line in red.

Presuming bremsstrahlung losses a 100MeV electron from our primary ferrous simulations will have a depolarization of 66.6%

We use this 2/3 polarization loss figure when needing to account for polarization losses.

Carbon Steel roller bearings.

1" ID 2.25" OD

Modeled as cylinder with spec'd ID and OD with a z-thickness enough to give the ring a mass of ~0.22kg (0.48 lb in specs).

Used G4-STAINLESS_STEEL in remoll for simulation.

https://www.skf.com/au/products/rollin g-bearings/roller-bearings/tapered-roll er-bearings/single-row-tapered-roller-b earings/productid-15578%2F15520

9300 – GEM Rotator Roller Bearings (cont'd)

https://www.skf.com/au/products/rollin g-bearings/roller-bearings/tapered-roll er-bearings/single-row-tapered-roller-b earings/productid-15578%2F15520

Material information sourced from SKF website.

(1) Confirm with Chandika specifics about the material for this specific. It's possible that I missed specific component materials in listing on the website.
Other than that all I found was general information about SKF-made components.

Bearing rings

The pressure at the rolling contact area and the cyclic overrolling creates fatigue in the bearing rings when the bearing is in operation. To cope with such fatigue, rings that are made of steel must be hardened.

The standard steel for bearing rings and washers is 100Cr6, a steel containing approximately 1% carbon and 1,5% chromium.

SKF bearing rings and washers are made of steel in accordance with SKF specifications. They cover all aspects that are relevant to providing a long service life for the bearing. Depending on specific requirements, SKF uses stainless steels or high-temperature steels.

Rolling elements

The rolling elements (balls or rollers) transfer the load between inner and outer rings. Typically, the same steel is used for rolling elements as for bearing rings and washers. When required, rolling elements can be made of ceramic material. Bearings containing ceramic rolling elements are considered hybrid bearings and are becoming more and more common.

9300 – GEM Rotator Roller Bearings (cont'd)

Previous modeling was just the roller bearings which are red in this screen snip.

Added is the wheel structure made of aluminum (gray) and wheel pin (yellow) which is stainless steel (modeled as such on request).

The additional materials should provide some shielding of primaries and attenuation of secondaries.

Note: There is some additional aluminum structure such as the plates which attach to the legs and hold the pins which are not modeled here.

NEW

9300: GEM Rotator Roller Bearings (ferrous material only)

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

If the material is indeed 100Cr6 and assuming a relative permeability of our listed 'carbon steel' then we're above the limit by about a factor of 4.

Two considerations:

- Depolarization divide ferrous background by 3.
- (2) Aluminum roller structure missing.
 - I believe shielding & attenuation by the wheel structure would then sufficiently tamp this down to comfortable territory.

Gammas
4.07E-11

(9911 PMT Region) Total Fractional - 0&1						
Secondaries Electrons Gammas						
9300	1.78E-10	3.23E-10				

9300: GEM Rotator Roller Bearings (ferrous material only)

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rotator Whe	el Bearings	*Simulation with v	vheel and frame	mass (G4_AI)
Sim Date:	10/31/2023			T T T A	
Detector #:	9300			JEN	
			GEM Rotator Whee	l Bearings Unv	veighted By BFi
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)
	Primary Counts		P	rimary Fractiona	1
Primaries	0	0&1	Primaries	0	0&1
9300		43	9300		2.15E-09
(9928 Mair	Det) Secondary Co	unts - 0&1	(9928 MainDe	t) Secondary Fra	actional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9300	26	487	9300	5.20E-05	9.74E-04
(9911 PMT R	egion) Secondary C	ounts - 0&1	(9911 PMT Regi	ion) Secondary F	ractional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9300	142	1677	9300	2.84E-04	3.35E-03

- A factor of ~3.5 reduction in the fraction of primary hits.
- Secondary charge hits on the detector are reduced by two order of magnitude.
- It's not immediately clear why this is the case. I could make the SS pins sensitive in the secondary and assign a volume number to the Al structure.
- Nonetheless, I think the results demonstrate that the bearings are 'safe'.

(9928 MainDet) Total Fractional - 0&1						
Secondaries	Electrons	Gammas				
9300	1.12E-13	2.09E-12				

(9911 PMT Region) Total Fractional - 0&1					
Secondaries Electrons Gammas					
9300	6.11E-13	7.21E-12			
		12			

Backgrounds that hit PMT Region

Backgrounds that hit PMT Region

Floor locks built to spec from JT files.

Made of G4_STAINLESS-STEEL in remoll

Placed, in remoll, right behind the floor rail for the barite wall.

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume: Sim Date: Detector #:	Sens Volume: GEM Rotator Floor Locks Sim Date: 9/15/2023 Detector #: 9301			ator Floor Locks 3 GEM Rotator Floor Locks Unweighted By BField GEM Rotator Floor Locks Unweighted By BField			larization can be idered. puts the results on the of comfortability.	
Total Prim's:	15,000,000,000		Total Sec's:	500,000	(per sens det)			
	Primary Counts		P	rimary Fractional				
Primaries	0	0&1	Primaries	0	0&1			
9301		362	9301		2.41E-08			
(9928 Main	Det) Secondary C	ounts - 0&1	(9928 MainDe	et) Secondary Fra	ctional - 0&1	(9928 Maj	inDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9301	613	59	9301	1.23E-03	1.18E-04	9301	2.96E-11	2.85E-12
(9911 PMT R	egion) Secondary	Counts - 0&1	(9911 PMT Reg	ion) Secondary Fr	actional - 0&1	(9911 PMT	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9301	3052	339	9301	6.10E-03	6.78E-04	9301	1.47E-10	1.64E-11

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rotator Floor Locks		*Simulation with v	wheel and frame	mass (G4_Al)
Sim Date:	10/31/2023	10/31/2023			1000 C
Detector #:	9301			JEN	
			GEM Rotator Floo	or Locks Unwe	ighted By BFiel
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)
	Primary Counts		P	rimary Fractiona	1
Primaries	0	0&1	Primaries	0	0&1
9301		202	9301		1.01E-08
(9928 Mair	Det) Secondary Co	unts - 0&1	(9928 MainDe	et) Secondary Fra	ictional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9301	195	65	9301	3.90E-04	1.30E-04
(9911 PMT F	egion) Secondary C	ounts - 0&1	(9911 PMT Reg	ion) Secondary F	ractional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9301	1354	440	9301	2.71E-03	8.80E-04

Overall reductions in primaries and secondaries.

While these were previously on the edge of comfortability, they are now within acceptable limits by about an order of magnitude after additional considerations (depolarization, etc.)

(9928 Ma	inDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas
9301	3.94E-12	1.31E-12

(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9301	2.74E-11	8.89E-12			

Backgrounds that hit PMT Region

Backgrounds that hit PMT Region

I went with a simple toy model for the GEM Rotator motor at this point.

I could not find information online about a "6660N33" gear motor.

Your search - "6660n33" ac gear motor - did not match any documents. Suggestions:

So, I looked at similar looking models and many were in the 7-8kg range.

I went with a toy model [rectangle] the width and height of the motor in the JT file and made it thick enough in Z for 7kg of material.

>>	*** Fully	/ magnetized	material	fractional	limit per	e.o.t. is	10 ⁻¹² ***	<<
----	-----------	--------------	----------	------------	-----------	-----------	-----------------------	----

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

						sugge
Sens Volume:	GEM Rotator Mote	or (Toy/Rect 7kg				
Sim Date:	9/15/2023					Depol
Detector #:	9302			JLD		numb
			GEM Rotator Motor (Toy	/Rect 7kg steel) -	- Unweighted By B	Field While
Total Prim's:	15,000,000,000		Total Sec's:	500,000	(per sens det)	variet susce
	Primary Counts	-	P	rimary Fractiona		fractio
Primaries	0	0&1	Primaries	0	0&1	any in
9302		39	9302		2.60E-09	
(9928 Mair	nDet) Secondary Co	unts - 0&1	(9928 MainDe	et) Secondary Fra	ctional - 0&1	(9
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Second
9302	199	44	9302	3.98E-04	8.80E-05	930
(9911 PMT R	Region) Secondary (Counts - 0&1	(9911 PMT Reg	ion) Secondary F	ractional - 0&1	(99)
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Second
9302	1044	235	9302	2.09E-03	4.70E-04	930

This toy model of the gear motor suggests that it's not an issue.

Depolarization reduces these numbers by a factor of 3.

While I presume there may be a variety of materials with varying susceptibilities, with a background fraction of 10⁻¹² this is safely within any limit.

(9928 MainDet) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9302	1.03E-12	2.29E-13			

(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9302	5.43E-12	1.22E-12			

>>	*** Full	y magnetized	material	fractional	limit per	e.o.t. is	10 ⁻¹² *** <	<<
----	----------	--------------	----------	------------	-----------	-----------	-------------------------	----

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Minor reduction in primary strikes,

Sens Volume:	GEM Rotator Mo	*Simulation with	wheel and frame	mass (G4_Al)	farther away this makes s	r from frame r sense.	nass so	
Sim Date:	10/31/2023			TTTA	T			
Detector #:	9302			NEN		Consideratio	ons:	
		GE	M Rotator Motor (To	//Rect 7kg steel)	Unweighted By BFi	(1) Depolariz	zation (reduc	e by 3x)
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)	area overmo	el→Right mas odeled	ss/surrace
	Primary Counts		l i	Primary Fractiona	1			
Primaries	0	0&1	Primaries	0	0&1	Simulation s	uggests this	is sate.
9302		34	9302		1.70E-09			
(9928 Mair	Det) Secondary C	ounts - 0&1	(9928 MainD	et) Secondary Fra	actional - 0&1	(9928 Maj	nDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9302	146	41	9302	2.92E-04	8.20E-05	9302	4.96E-13	1.39E-13
(9911 PMT R	egion) Secondary	Counts - 0&1	(9911 PMT Reg	ion) Secondary F	ractional - 0&1	(9911 PMT)	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9302	1045	180	9302	2.09E-03	3.60E-04	9302	3.55E-12	6.12E-13

26

Backgrounds that hit PMT Region

Backgrounds that hit PMT Region

12mm high x 10mm deep

Modeled as the perimeter of two circles connected at common tangents with rectangle boxes

Material specified to be SS316

MAKE X/Y Plot for Primaries

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rotator Chair	1					
Sim Date:	9/15/2023 9303						
Detector #:							
			GEM Rotator (Chain Unweigh	ted By BField		
Total Prim's:	15,000,000,000		Total Sec's:	500,000	(per sens det)		
	Primary Counts	3	P	rimary Fractiona	1		
Primaries	0	0&1	Primaries	0	0&1		
9303		2620	9303		1.75E-07		
(9928 Mair	Det) Secondary Co	unts - 0&1	(9928 MainDe	et) Secondary Fra	ctional - 0&1		
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas		
9303	5171	4600	9303	1.03E-02	9.20E-03		
(9911 PMT R	legion) Secondary C	ounts - 0&1	(9911 PMT Regi	ion) Secondary F	ractional - 0&1		
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas		
9303	12962	19889	9303	2.59E-02	3.98E-02		

SS316 falls between ideal and worst stainless steel. Tolerable background limits would therefore be around 10⁻⁷

We fall very nicely under that.

Additionally, the chain is over-modeled in size which would further reduce the background fraction. Depolarization and some shielding/attenuation from the rotator structure would also reduce the ferrous background fraction.

(9928 Mai	nDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas
9303	1.81E-09	1.61E-09

(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9303	4.53E-09	6.95E-09			

-3Z

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

This fell well-under the tolerable limit

Sens Volume:	e: GEM Rotator Chain		*Simulation with	vheel and frame	mass (G4 All)	previously 10	⁻⁷ for SS316.	
Sim Date:					Simulated backgrounds fall by an orde			
Detector #: 9303		NEW		of magnitude after the addition of				
			GEM Rotator (Chain Unweigh	ted By BField		11033.	
						The chain wa	s already over	-modeled a
Total Prim's: 20,000,000,000			Total Sec's:	500,000	(per sens det)	bit so we're a	good three or	ders of
						magnitude ur	ider our impos	ed limit.
	Primary Counts		P	rimary Fractiona	1			
Primaries	0	0&1	Primaries	0	0&1			
9303		2131	9303		1.07E-07			
						\sim		
(9928 Main	Det) Secondary Co	ounts - 0&1	(9928 MainDe	et) Secondary Fra	ctional - 0&1	(9928 Mai	nDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gamma
9303	1121	1670	9303	2.24E-03	3.34E-03	9303	2.39E-10	3.56E-10
(9911 PMT Re	egion) Secondary (Counts - 0&1	(9911 PMT Reg	ion) Secondary F	ractional - 0&1	(9911 PMT)	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gamma
9303	2071	5781	9303	4.14E-03	1.16E-02	9303	4.41E-10	1.23E-09

Backgrounds that hit PMT Region

9303: GEM Rotator Chain

Three types of fasteners. Modeled 2 sets which were the bulk of the material.

Material specified to be SS316

Item specifics on next three slides.

FEAT

MATT

CMLP

MATT

MDCI

I'll note that the 93190A722 bolt/screw overlaps in the center portion of the frame. I just unioned them together in remoll so they appear as one long continuous piece.

These weren't in the simulation. I had hit my deadline and figured that we could mass-scale the results if we were concerned about there being an issue.

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rotator Faste	eners			
Sim Date:	9/15/2023				
Detector #:	9304			JLD	
			GEM Rotator Fas	steners Unwei	ghted By BField
Total Prim's:	15,000,000,000		Total Sec's:	500,000	(per sens det)
	Primary Counts		P	rimary Fractiona	l l
Primaries	0	0&1	Primaries	0	0&1
9304		4414	9304		2.94E-07
(9928 Mai	nDet) Secondary Co	unts - 0&1	(9928 MainDe	t) Secondary Fra	actional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9304	7133	4938	9304	1.43E-02	9.88E-03
(9911 PMT F	Region) Secondary C	ounts - 0&1	(9911 PMT Regi	on) Secondary F	ractional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9304	18454	29055	9304	3.69E-02	5.81E-02

SS316 falls between ideal quality and worst quality stainless.

A ferrous background of 10⁻⁷ would be considered the limit of what is tolerable and we fall over an order of magnitude under that without making considerations for depolarization or additional shielding/attenuation from the rotator structure itself.

(9928 MainDet) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9304	4.20E-09	2.91E-09			

(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9304	1.09E-08	1.71E-08			

Sens Volume: GEM Rotator Fasteners

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Was fine before... see notes on previous slide.

		271.5C2.0A2			1 - 1			
Sim Date:	10/31/2023				and the latter of the sector o	Background	rates droppe	d by an
Detector #:	9304			JEN		order of mac	nitude with a	ddition of
			GEM Rotator Fa	steners Unwei	ghted By BField	rotator frame	e mass.	
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)			
	Primary Counts		P	rimary Fractiona	ıl			
Primaries	0	0&1	Primaries	0	0&1			
9304		1735	9304		8.68E-08			
(9928 Mai	nDet) Secondary Co	unts - 0&1	(9928 MainDe	et) Secondary Fra	actional - 0&1	(9928 Mai	nDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9304	2918	7671	9304	5.84E-03	1.53E-02	9304	5.06E-10	1.33E-09
(9911 PMT F	Region) Secondary C	counts - 0&1	(9911 PMT Reg	ion) Secondary F	ractional - 0&1	(9911 PMT	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9304	6626	35226	9304	1.33E-02	7.05E-02	9304	1.15E-09	6.11E-09

*Simulation with wheel and frame mass (G4 Al)

9305 – GEM Rotator Stepper Motors

Stepper motors.

Unsure of particular design of these.

Modeled the ferrous materials as a cylinder (rmin=8.5mm and rmax=15.5mm). Unsure of total material needed so just went with z=45mm; this is probably too much material but figured too much here was better than too little.

nput interpretation	
π (15.5 mm (millimeters) × 15.5 mm (millimeters 8.5 mm (millimeters) × 8.5 mm (millimeter	s) – ers))×45 mm (millimeters)
{Result} $ ho{Fe}$ ~ 7.8 g	g/cm³
23 800 mm ³ (cubic millimeters)	
Unit conversions 23.8 cm ³	х _{Фге} = 185.6 g і

*** There could be model improvement with more information from GEM team if the information is on hand or known. I may very well have over-modeled the material in question.

>> *** Fully magnetized material fractional limit per e.o.t. is 10⁻¹² *** <<

9305: GEM Stepper Motors

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Spin polarization of Fe is ~8%. So tolerable background limits on these motors is 10^{-12} per e.o.t.

As modeled (there may be some wiggle room for mass scaling) the ferrous backgrounds are high on the main detector area and also on the PMT boundary region.

				GEM Rotator Step	per Unweig	hted By BField
Total Prim's:	15,000,000,000	$0\mathbf{L}$	D	Total Sec's:	500,000	(per sens det)
	Primary Counts	-		Prin	nary Fractiona	l
Primaries	0	0&1		Primaries	0	0&1
9305		57		9305		3.80E-09

(9928 MainDet) Secondary Counts - 0&1					
Secondaries	Electrons	Gammas			
9305	521	207			

Sens Volume: GEM Rotator Stepper

Sim Date: 10/9/2023

Detector #: 9305

Gammas
864

et) Secondary Fra	ctional - 0&1
Electrons	Gammas
1.04E-03	4.14E-04
	et) Secondary Fra Electrons 1.04E-03

(9911 PMT Region) Secondary Fractional - 0&1							
Secondaries	Electrons	Gammas					
9305	3.66E-03	1.73E-03					
	(*************************************						

(9928 MainDet) Total Fractional - 0&1							
Secondaries	Electrons	Gammas					
9305	3.96E-12	1.57E-12					

(9911 PMT Region) Total Fractional - 0&1							
Secondaries	Electrons	Gammas					
9305	1.39E-11	6.57E-12					

9305: GEM Stepper Motors

>>	*** Fu	illy mag	gnetized	material	fractional	limit p	er e.o.t.	is '	10 ⁻¹² ***	<<
----	--------	----------	----------	----------	------------	---------	-----------	------	-----------------------	----

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume: Sim Date: Detector #:	GEM Rotator Step 10/31/2023 9305	oper Motors	*Simulation with	wheel and frame	mass (G4_Al)	Ferrous backg 10-12 As would be ex change from th	round goal here xpected, there w he previous simu	is a limit of vas little ulation. These
			GEM Rotator Step	per Motors Unv	veighted By BField	around them.	s are far out witr	n little mass
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)	However, with we can take of the tolerable lin	depolarization of a factor of 3 with the second sec	considerations hich puts us a
	Primary Counts		f	Primary Fractiona				
Primaries	0	0&1	Primaries	0	0&1			
9305		57	9305		2.85E-09			
(9928 Mair	Det) Secondary Co	ounts - 0&1	(9928 MainD	et) Secondary Fra	ctional - 0&1	(9928 Maj	inDet) Total Fracti	ional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9305	560	49	9305	1.12E-03	9.80E-05	9305	3.19E-12	2.79E-13
(9911 PMT R	egion) Secondary	Counts - 0&1	(9911 PMT Reg	tion) Secondary F	ractional - 0&1	(9911 PMT)	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9305	2092	203	9305	4.18E-03	4.06E-04	9305	1.19E-11	1.16E-12

9306 – GEM Rotator T-Nuts (Toy Geometry)

- T-nuts SS304
 - <u>https://8020.net/3607.html</u>
 - <u>https://8020.net/3678.html</u>
- Modeling all of these is too difficult and likely unnecessary.
 - Modeled SS plates of material with proper masses at locations shown (in image shown).
 - Masses taken from specs from website for one screw/nut pairs.
 - Used 4x4 fastener location (outlined in red) to get a generalized density of material–16 fasteners over about (16cm)^2 of space.
 - There are a handful of middle fasteners that I did miss.
- Additional areas modeled circled in cyan (done on left and right)

Mass of ~792 t-nut fasteners modeled (one of the areas near the motor was slightly different but I modeled like the other side for ease but otherwise mass is accurate for each area although area may be slightly off).

⇒ This is about 50% of the total t-nut fasteners and represents an accurate spatial distribution of the t-nut fasteners.

^^^ Green squares are the t-nut toy geometry.

			Global		Model										
Y-Center:	2959.1		1st GEM:	19280	1st GEM:	-576.5									
TNut	0.027	lbs	0.0594	kg		Nut+Screw	103.4	g		TNUT DIM					
Screw	0.02	lbs	0.044	kg		Density	0.00786	g/mm^3		L	1.113	in	28.2702	mm	
										W	0.638	in	16.2052	mm	
AdjThick	0.319	in	8.1026	mm	Thickness	s Adjustment:	1.45			Th	0.22	in	5.588	mm	
Datch as fa	Thister (E)	ant (Plack (I	hoft (D)ight												
Fatches IU	i muus. (i ji	one (b)ack (t	LJEIL (KJIBIIL						(COPY TO XN	AL MATRIX			1	
	GENE	RAL INFORM	ATION	24	LO	CAL COORDINA	ATES	GLOB/	AL COORDIN	VATES		DIMENSION	VS		
PATCH	NUTS	MASS	THICK (mm) LxW (mm)	XPOS	YPOS	ZPOS	XPOS	YPOS	ZPOS	HLX	HLY	HLZ		-
F1	20	2068	8.10	180.20	-962.8	224.0	-740.9	-962.8	-2735.1	19115.6	90.099	90.10	4.05		-
F2	66	6824.4	8.10	327.35	0.0	300.2	-740.9	0.0	-2658.9	19115.6	163.674	163.67	4.05		
F3	20	2068	8.10	180.20	962.8	224.0	-740.9	962.8	-2735.1	19115.6	90.099	90.10	4.05		
F4	47	4859.8	8.10	276.24	-916.2	1298.0	-740.9	-916.2	-1661.1	19115.6	138,120	138.12	4.05		
F5	20	2068	8.10	180.20	0.0	1365.0	-740.9	0.0	-1594.1	19115.6	90.099	90.10	4.05		
F6	47	4859.8	8.10	276.24	916.2	1298.0	-740.9	916.2	-1661.1	19115.6	138.120	138.12	4.05		
F7A	16	1654.4	8.10	161.17	-1020.0	1860.4	-740.9	-1020.0	-1098.7	19115.6	80.587	80.59	4.05		Shc
F8A	16	1654.4	8.10	161.17	1020.0	1860.4	-740.9	1020.0	-1098.7	19115.6	80.587	80.59	4.05		
F7B	16	1654.4	8.10	161.17	-1020.0	1860.4	-575.8	-1020.0	-1098.7	19280.7	80.587	80.59	4.05		Fac
F8B	16	1654.4	8.10	161.17	1020.0	1860.4	-575.8	1020.0	-1098.7	19280.7	80.587	80.59	4.05		whi
B1	20	2068	8.10	180.20	-962.8	224.0	740.9	-962.8	-2735.1	20597.4	90.099	90.10	4.05		TN
B2	66	6824.4	8.10	327.35	0.0	300.2	740.9	0.0	-2658.9	20597.4	163.674	163.67	4.05		
B3	20	2068	8.10	180.20	962.8	224.0	740.9	962.8	-2735.1	20597.4	90.099	90.10	4.05		
B4	47	4859.8	8.10	276.24	-916.2	1298.0	740.9	-916.2	-1661.1	20597.4	138.120	138.12	4.05		
B5	20	2068	8.10	180.20	0.0	1365.0	740.9	0.0	-1594.1	20597.4	90.099	90.10	4.05		
B6	47	4859.8	8.10	276.24	916.2	1298.0	740.9	916.2	-1661.1	20597.4	138.120	138.12	4.05		
B7A	16	1654.4	8.10	161.17	-1020.0	1860.4	740.9	-1020.0	-1098.7	20597.4	80.587	80.59	4.05		
B8A	16	1654.4	8.10	161.17	1020.0	1860.4	740.9	1020.0	-1098.7	20597.4	80.587	80.59	4.05		
B7B	16	1654.4	8.10	161.17	-1020.0	1860.4	575.8	-1020.0	-1098.7	20432.3	80.587	80.59	4.05		
B8B	16	1654.4	8.10	161.17	1020.0	1860.4	575.8	1020.0	-1098.7	20432.3	80.587	80.59	4.05		
L1	28	2895.2	8.10	213.21	-1102.6	238.9	604.4	-1102.6	-2720.2	20460.9	106.607	106.61	4.05		
L2	28	2895.2	8.10	213.21	-1102.6	238.9	-606.4	-1102.6	-2720.2	19250.1	106.607	106.61	4.05		
L3	28	2895.2	8.10	213.21	-1102.6	831.3	606.4	-1102.6	-2127.8	20462.9	106.607	106.61	4.05		
L4	28	2895.2	8.10	213.21	-1102.6	831.3	-606.4	-1102.6	-2127.8	19250.1	106.607	106.61	4.05		
R1	28	2895.2	8.10	213.21	1102.6	238.9	606.4	1102.6	-2720.2	20462.9	106.607	106.61	4.05		
R2	28	2895.2	8.10	213.21	1102.6	238.9	-606.4	1102.6	-2720.2	19250.1	106.607	106.61	4.05		
R3	28	2895.2	8.10	213.21	1102.6	831.3	606.4	1102.6	-2127.8	20462.9	106.607	106.61	4.05		
R4	28	2895.2	8.10	213.21	1102.6	831.3	-606.4	1102.6	-2127.8	19250.1	106.607	106.61	4.05		

Copy of spreadsheet of locations for the patches of SS placed where t-nut fasteners are located.

*Represents about 50% of total t-nuts.

	Should be about 16*cm square			
1	Factor of 145% increase on thickne	ess gets	to right'i	sh coverage
1	which seems right adding in the so	crew to t	he thick	ness of the
ŀ	TNut, which has a hole anyway.			

**Modeled each area as a square patch so the area of coverage is centered correctly but may be slightly off due to shape.

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

SS-304 (Not great ferromagnetic guality, let's consider worst-case stainless). Tolerable limit per e.o.t. is on of the order 10⁻⁸ Sens Volume: GEM Rotator T-Nuts/Screws Sim Date: 10/12/2023 Detector #: 9306 GEM Rotator T-Nuts/Screws -- Unweighted By BField Total Prim's: 15,000,000,000 500.000 (per sens det) Total Sec's: **Primary Counts Primary Fractional** 0&1 0&1 Primaries 0 Primaries 0 9306 9306 717 4.78E-08 (9928 MainDet) Secondary Counts - 0&1 (9928 MainDet) Secondary Fractional - 0&1 Secondaries Electrons Secondaries Electrons Gammas Gammas 9306 1773 585 9306 3.55E-03 1.17E-03 (9911 PMT Region) Secondary Counts - 0&1 (9911 PMT Region) Secondary Fractional - 0&1 Secondaries Electrons Gammas Secondaries Electrons Gammas 9306 6132 2156 9306 1.23E-02 4.31E-03

(9928 MainDet) Total Fractional - 0&1						
Secondaries	Electrons	Gammas				
9306	1.69E-10	5.59E-11				

(9911 PMT Region) Total Fractional - 0&1							
Secondaries	Electrons	Gammas					
9306	5.86E-10	2.06E-10					

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Ferrous background was previously fine with a ferrous background limit of 10⁻⁸

Sens Volume:	GEM Rotator T-Nu	ts/Screws	*Simulation with	wheel and frame	mass (G4_AI)			
Sim Date:	10/31/2023			TTTA	7	After depolariza	ation considerat	ions we sit ~:
Detector #:	9306			NEN		orders of magn	itude under out	set limit.
			GEM Rotator T-Nu	ts/Screws Unw	eighted By BField			
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)			
	Primary Counts		P	rimary Fractional				
Primaries	0	0&1	Primaries	0	0&1			
9306		287	9306		1.44E-08			
(9928 Main	Det) Secondary Co	unts - 0&1	(9928 MainDe	et) Secondary Fra	ctional - 0&1	(9928 Maji	nDet) Total Fractio	onal - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9306	1410	422	9306	2.82E-03	8.44E-04	9306	4.05E-11	1.21E-11
(9911 PMT R	egion) Secondary (Counts - 0&1	(9911 PMT Reg	ion) Secondary Fi	ractional - 0&1	(9911 PMT F	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9306	6019	2142	9306	1.20E-02	4.28E-03	9306	1.73E-10	6.15E-11

9307 – GEM Rotator Frame Wheel Pins

- Wheel pin design is currently for Al 6061-T6 and Chandika asked if we can determine whether or not it would be acceptable to use SS316 for the wheel pin.
- The large yellow cylinder is the wheel pin, the roller can be seen in gray and the bearings in red.

9307: GEM Rot Wheel Pins

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

	Sens Volume:	GEM Rotator Wh	eel Pins	*Simulation with	wheel and frame	e mass (G4_AI)
	Sim Date:	10/31/2023		_	TTTA	7
	Detector #:	9307				
ľ				1		
				GEM Rotator W	heel Pins Unwe	ighted By BField
	Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)
		Primary Counts		Primary Fractional		
	Primaries	0	0&1	Primaries	0	0&1
	9307		95	9307		4.75E-09
	(9928 Main	Det) Secondary C	ounts - 0&1	(9928 MainD	et) Secondary Fra	actional - 0&1
	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
	9307	161	424	9307	3.22E-04	8.48E-04
	(9911 PMT R	egion) Secondary	Counts - 0&1	(9911 PMT Reg	gion) Secondary F	ractional - 0&1
	Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
	9307	518	1090	9307	1.04E-03	2.18E-03

As a reminder, SS316 falls under the worst quality SS putting the acceptable limit of ferrous backgrounds at 10⁻⁸

Simulated backgrounds fall four orders of magnitude under that.

It would be fine to make the wheel pins out of SS316 or better.

(9928 MainDet) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9307	1.53E-12	4.03E-12			
9307	1.53E-12	4.03E-12			

(9911 PMT Region) Total Fractional - 0&1				
Secondaries	Electrons	Gammas		
9307	4.92E-12	1.04E-11		

9307: GEM Rot Wheel Pins

9307: GEM Rot Wheel Pins

9308 – GEM Rotator Stepper Rods

• Material specs from website simply state that the material is stainless steel.

https://www.helixlinear.com/Products/Ste pper-Motor-Linear-Actuators-/Stepper-Mo tor-Linear-Actuator-External-/Stepper-Mot or-Linear-Actuator-External-SMA-23E3.2 5-039196~SMA-23E3.25-039196#produc t-specifications

- Stepper Rod
- Rod is of course long piece of material attached to the motor (on right in image) and bearing (on left in image).

9308: GEM Rot Stepper Rods

9308

3529

3066

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rotator Wh	eel Pins	*Simulation with	wheel and frame	e mass (G4_Al)	
Sim Date:	10/31/2023		_	TTTA	7	
Detector #:	9308					
			1			
			GEM Rotator Wh	ieel Pins Unwei	ighted By BField	
Total Prim's:	20,000,000,000		Total Sec's:	500,000	(per sens det)	
	Primary Counts		Primary Fractional		I	
Primaries	0	0&1	Primaries	0	0&1	
9308		490	9308		2.45E-08	
(9928 Mair	Det) Secondary C	ounts - 0&1	(9928 MainDe	et) Secondary Fra	ictional - 0&1	
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	
9308	821	752	9308	1.64E-03	1.50E-03	
						•
(9911 PMT R	egion) Secondary	Counts - 0&1	(9911 PMT Reg	ion) Secondary F	ractional - 0&1	
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas	1

9308

7.06E-03

6.13E-03

The stepper motor rods are not problematic. SS316 or better is fine.

(9928 MainDet) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9308	4.02E-11	3.68E-11			

(9911 PMT Region) Total Fractional - 0&1					
Secondaries	Electrons	Gammas			
9308	1.73E-10	1.50E-10			

9308: GEM Rot Stepper Rods

9308: GEM Rot Stepper Rods

9309 – GEM Rotator Stepper Bearings

- Chandika informed me that the bearings will be some kind of carbon steel.
- Bearings are surrounded by a stainless steel housing (yellow square).
 - Chandika has been told by the manufacturer that the housing can be made of SS316.

- There is currently no Al frame material (shown in gray) surrounding these put into the ferrous simulation.
 - Additional materials may help attenuate ferrous backgrounds from the steeper bearings as was the case with the wheel bearings although there is less material 'in the way' for stepper bearing ferrous backgrounds.

9309: Gem Rot Stepper Bearings

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Sens Volume:	GEM Rotator Stepper Bearings
Sim Date:	10/31/2023
Detector #:	9309

*Simulation	with wl	heel and	frame	mass	(G4_	_AI)
-------------	---------	----------	-------	------	------	------

NEW

GEM Rotator Stepper Bearings -- Unweighted By BField

		-
Total Sec's:	500,000	(per sens det)
-	Primary Fractiona	I
Primaries	0	0&1
9309		1.10E-08

(9928 MainDet) Secondary Fractional - 0&1		
Secondaries	Electrons	Gammas
9309	1.23E-02	1.66E-02

(9911 PMT Region) Secondary Fractional - 0&1			
Secondaries	Electrons	Gammas	
9309	1.72E-02	7.41E-02	

Stepper bearings are some type of carbon steel. This puts tolerable ferrous background limits at 10⁻¹¹.

Raw simulation results give ferrous backgrounds at the $\sim 1(10^{-10})$ level.

Depolarization considerations bring the raw simulation results to around 5(10⁻¹¹) still above our desired limit.

There are additional materials which can be modeled.

(9928 MainDet) Total Fractional - 0&1		
Electrons	Gammas	
1.34E-10	1.81E-10	
	<u>Det) Total Eracti</u> Electrons 1.34E-10	

(9911 PMT Region) Total Fractional - 0&1		
Secondaries	Electrons	Gammas
9309	1.88E-10	8.12E-10
9309	1.885-10	8.12E-10

Sim Date:	10/31/2023	
Detector #:	9309	

Primary Counts		
Primaries	0	0&1
9309		219

Total Prim's: 20,000,000,000

(9928 MainDet) Secondary Counts - 0&1			
Secondaries	Electrons	Gammas	
9309	6131	8286	

(9911 PMT Region) Secondary Counts - 0&1		
Secondaries	Electrons	Gammas
9309	8576	37073
9309: Gem Rot Stepper Bearings

Backgrounds that hit detector '28'

9309: Gem Rot Stepper Bearings

Backgrounds that hit PMT Region

Summary

and meeting comments/notes

(Updated) Simulation Summary & Comments

Ferrous Detector	Ferrous Volume Common Name	Material(s)	Ferrous BG ¹ Limit [per e.o.t.]	OLD Main Det Sim BG ¹ [per e.o.t]	NEW Main Det Sim BG ¹ [per e.o.t]	Comment
9300	Roller Bearings	100Cr6 [Carbon Steel]	10 ⁻¹¹	< 2(10 ⁻¹¹)	~5(10 ⁻¹³)	Addition of large amounts of wheel materials and <u>stainless</u> <u>steel</u> wheel pins have reduced the ferrous backgrounds to tolerable limits.
9301	Floor Locks	Carbon Steel and SS	10 ⁻¹¹	~1(10 ⁻¹¹)	~4(10 ⁻¹²)	Addition of wheel materials has dropped this by about a factor of 2 into tolerable range.
9302	Gear Motor	7kg Multiple Materials	10 ⁻¹²	< 1(10 ⁻¹²)	~5(10 ⁻¹³)	Assuming worst material limits we're still under the ferrous BG ¹ limit.
9303	Chain	SS316	10 ⁻⁸	~2(10 ⁻⁹)	~3(10 ⁻¹⁰)	Over-modeled slightly and safely within limits. Depolarization adds further comfort as does shielding and attenuation by GEM Rotator structure.
9304	Bolt Fasteners	SS316	10 ⁻⁸	~4(10 ⁻⁹)	~5(10 ⁻¹⁰)	As expected, addition of wheel materials reduced backgrounds further. Bolt fasteners are not a concern.
9306	Stepper Motors	Modeled as 2.6kg Fe	10 ⁻¹²	~4(10 ⁻¹²) ↓ ~1.5(10 ⁻¹²)	~3(10 ⁻¹²) ↓ ~2(10 ⁻¹²)	As modeled, with depolarization considerations we are down to our limit. Current modeled mass is about 25% of the motor. So there may be some mass scaling needed (x2)

Simulation Summary & Comments (Cont'd)

Ferrous Detector	Ferrous Volume Common Name	Material(s)	Ferrous BG ¹ Limit [per e.o.t.]	OLD Main Det Sim BG ¹ [per e.o.t]	NEW Main Det Sim BG ¹ [per e.o.t]	Comment
9306	T-Nut Fasteners	SS304	10 ⁻⁸	~2(10 ⁻¹⁰)	4(10 ⁻¹¹)	Model result was ~4(10 ⁻¹¹), doubling to account for unmodeled mass we come to <8(10 ⁻¹¹). Assuming that SS-304 is absolute worst quality this is still well below tolerable limits.
9307	Wheel Pins	SS316	10 ⁻⁸	N/A	2(10 ⁻¹²)	Tolerable to be made of SS316 or better.
9308	Stepper Rods	SS [Unspecified Type]	10 ⁻⁸	N/A	4(10 ⁻¹¹)	Stepper Rods are fine.
9309	Stepper Bearings	Carbon Steel	10 ⁻¹¹	N/A	1.5(10 ⁻¹⁰) ↓ ~5(10 ⁻¹¹)	These are closest to the beamline of any ferrous item in the rotator. High background rates are not surprising. Depolarization reduces by factor of 3. There's more wheel mass which isn't modeled, but I don't expect a drastic reduction like the wheel bearings.
9310	Stepper Bearing Housing	SS316	10 ⁻⁸	N/A		

Recent Meeting Notes

- Things to be added
- Revisions

Ferrous Materials Meeting Comments/Ongoing/New

- Re-sim with alum wheel pins
- Add mass around stepper bearings
- Investigate no hits on 9310 / 9309

