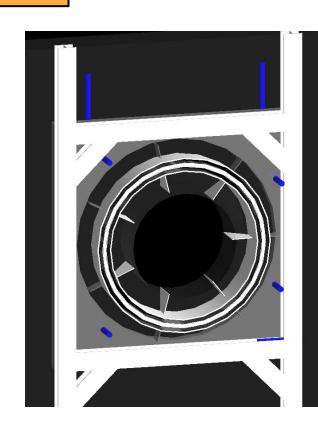
Ferrous Materials:

Pion Donut Tie-rods

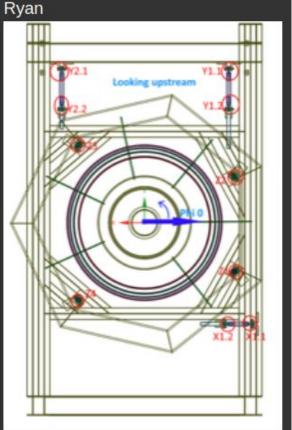
Eric King

Updated:

July 19th, 2023

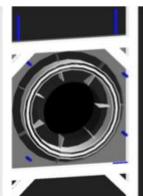

Pion Donut Tie-rods

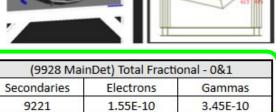
Total volume of steel = to amounts cited by Ryan in email.


Modeled as tubes of steel from end to end making no assumptions about the material.

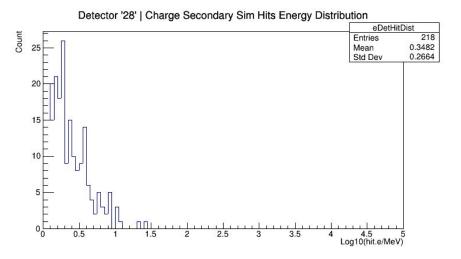
Model Looks reasonable.

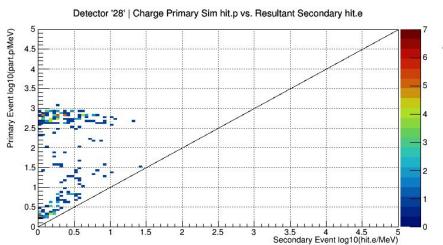
Assigned ferrous detector number 9221

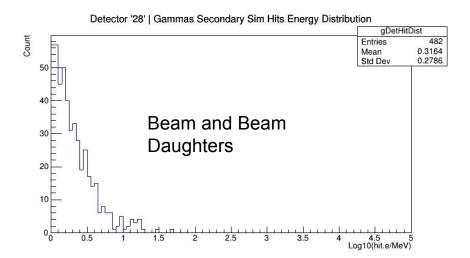

Very Respectfully,

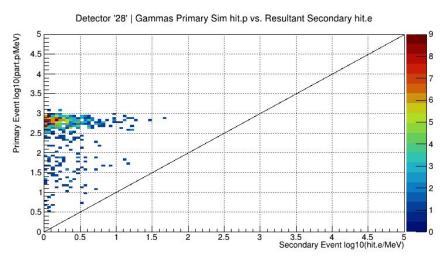


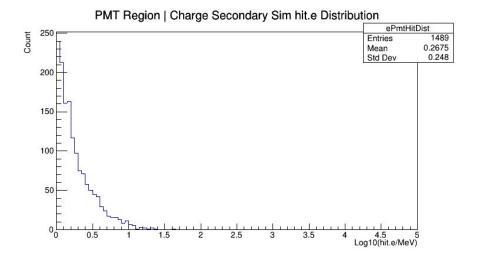
9199 – LVPS [GEM DAQ]

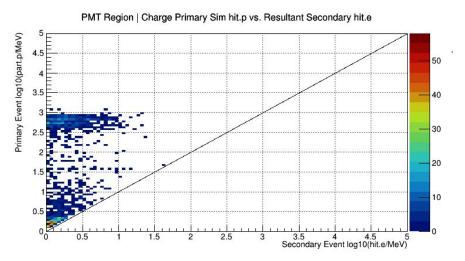

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

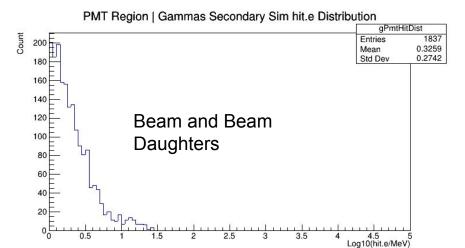

Sens Volume:	Pion Donut Tierod	5	Backgroun		e.o.t. are
Sim Date:	2/8/2023		~10 ⁻¹⁰ << 1	0-8	
Detector #:	9221				
			Pion Donut Tie	rods Unweigh	ted By BField
Total Prim's:	12,500,000,000		Total Sec's:	5,000,000	(per sens det)
	Primary Counts	Counts Primary Fractional		I	
Primaries	0	0&1	Primaries	0	0&1
9221		4119	9221		3.30E-07
(9928 Mair	nDet) Secondary Co	unts - 0&1	(9928 MainDe	t) Secondary Fra	ectional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9221	2348	5237	9221	4.70E-04	1.05E-03
(9911 PMT F	Region) Secondary C	ounts - 0&1	(9911 PMT Regi	on) Secondary F	ractional - 0&1
Secondaries	Electrons	Gammas	Secondaries	Electrons	Gammas
9221			9221	0.00E+00	0.00E+00

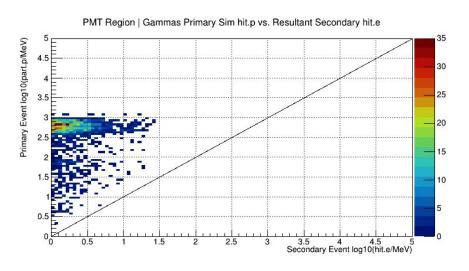


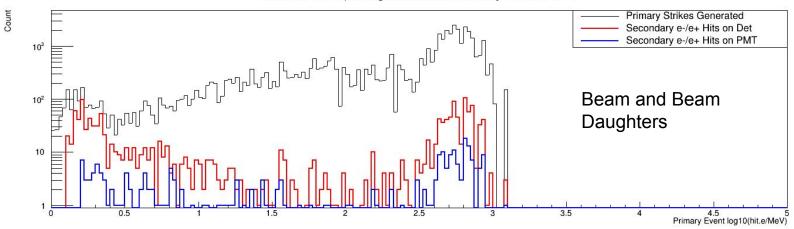


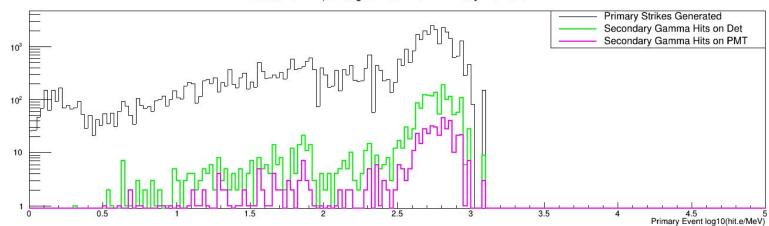

(9911 PMT I	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas
9221	0.00E+00	0.00E+00











Detector 9221 | Charges hit.e From Primary hit.mtrid <= 1

Detector 9221 | Charges hit.e From Primary hit.mtrid <= 1

Count

Takeaway

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

- No specific concerns about the pion donut tie-rods.
- Objects→tubes in simulation model the mass of the tie rods and tie rod ends per Ryan Biraben at specified locations
- > 10^{-10} (ferrous background rates) << 10^{-8} rates for even the worst-quality (in terms of χ_R) stainless steel.

Component specifics given to me.

Rod Ends (McMaster Carr 60656K62) are each 119 cm³ of zinc-plated carbon steel. Bolts (McMaster Carr 91247A924) are each 76 cm³ of zinc-plated grade 5 steel.

Specified locations for tie rods, just for the record.

Link	φ (°)	R (in)	R (mm)
X1.1	318.2	89.2	2267
X1.2	309.6	77.2	1961
Y1.1	62.3	107.2	2722
Y1.2	54.5	85.8	2180
Y2.1	116.9	106.4	2704
Y2.2	124.6	84.9	2157
Z1.1 & .2	331.6	63.4	1612
Z2.1 & .2	27.3	62.2	1580
Z3.1 & .2	130.6	63.0	1600
Z4.1 & .2	229.3	62.8	1596