Ferrous Materials:

Brass Tie Rods US Torus Region

Eric King

Updated:

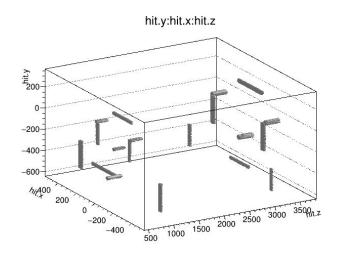
May 31st, 2023

Modeling

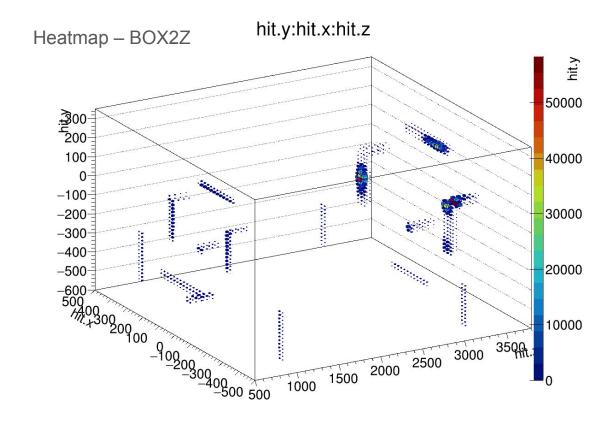
Tie Rods are modeled as G4 tubes extending from end to end.

Material is Brass

My original spreadsheet shown


"Regions" in my table were just based on original filenames from Cip gave me.

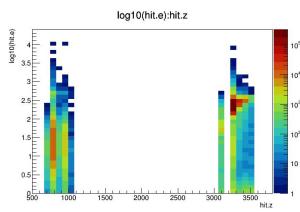
In-plane and out-of-plane just let me know orientation.

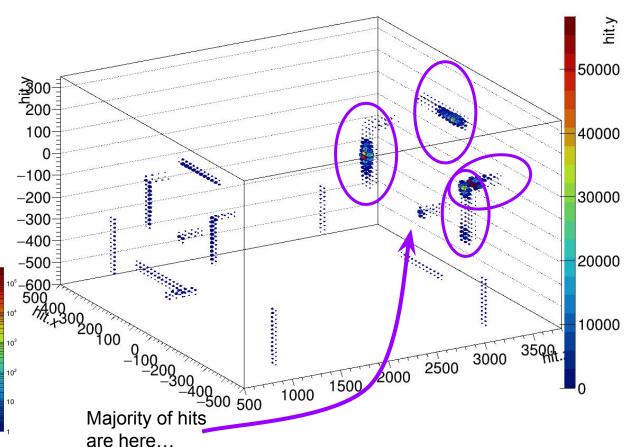

I'll attach these at the end just for reference.

	Dimensi	ons (mm)	Po	osition (mi	m)	Rotatio	n (deg)	Pos	ition (inch	es)	Dimens	ions (in)	radius
"REGION"	R	LZ	X	Υ	Z	X	Υ	X	Υ	Z	R	LZ	r
P1	26	255	434	-434	944	90	0	17	-17	37	1	10	613
	26	255	-434	-434	944	90	0	-17	-17	37	1	10	613
	26	255	179	-459	944	0	90	7	-18	37	1	10	492
	26	255	0	-434	816	0	0	0	-17	32	1	10	434
P2_2	22	204	-102	173	803	0	90	-4	6.8	31.5	0.87	8	201
In plane	22	204	-173	-102	803	90	0	-6.8	-4	31.5	0.87	8	201
65	22	204	173	-102	803	90	0	6.8	-4	31.5	0.87	8	201
P2_1	22	204	0	-173	905	0	0	0	-6.8	35.5	0.87	8	173
out plane	22	204	-189	0	905	0	0	-7.4	0	35.5	0.87	8	189
	22	204	189	0	905	0	0	7.4	0	35.5	0.87	8	189
P4	22	204	-444	-444	3111	90	0	-17.4	-17.4	122	0.87	8	627
	22	204	444	-444	3111	90	0	17.4	-17.4	122	0.87	8	627
	22	204	-102	-444	3111	0	90	-4	-17.4	122	0.87	8	455
P5	34	255	271	-135	3264	90	0	10.625	-5.3125	128	1.35	10	303
in plane	34	255	-271	-135	3264	90	0	-10.625	-5.3125	128	1.35	10	303
	34	255	-135	271	3264	0	90	-5.3125	10.625	128	1.35	10	303
P5	34	255	288	0	3417	0	0	11.3	0	134	1.35	10	288
out plane	34	255	-288	0	3417	0	0	-11.3	0	134	1.35	10	288
	34	255	0	-271	3417	0	0	0	-10,625	134	1.35	10	271

Geometry – Visualized via primary hit distribution.

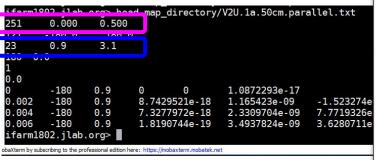
Quick and dirty rendering from skimmed hits.




hit.y:hit.x:hit.z

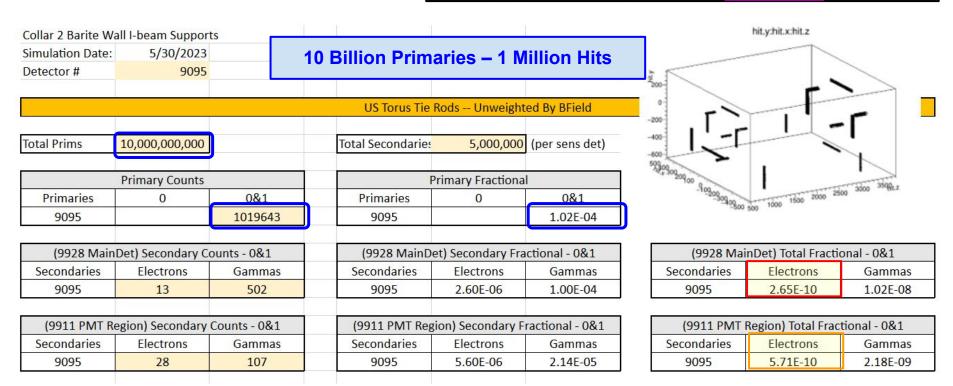
Primary Hits

Concentrated on Tie Rods that hold up Collimator 2 (I think that's what we're calling it).


Hits are confined largely to four of the rods.

Notes on Field Weighting

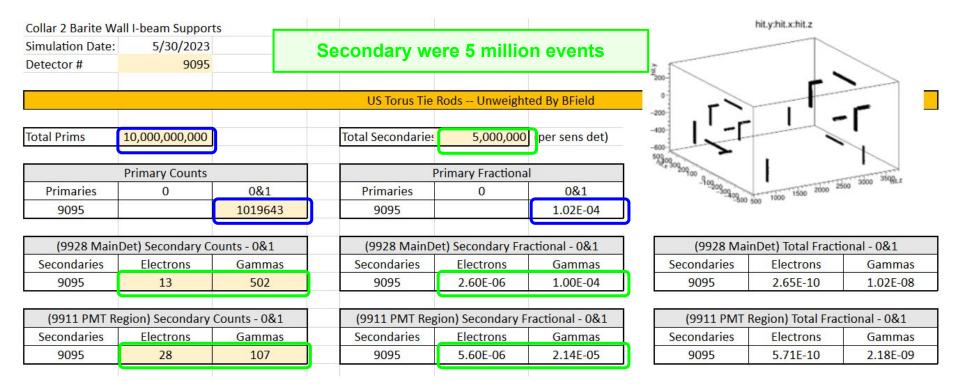
Field extends from 900mm to 3100mm in z, and 0 to ½ meter in r


	Dimensi	ons (mm)	Po	sition (m	m)	Rotatio	n (deg)	Pos	sition (inch	es)	Dimensi	ions (in)	radius
'REGION"	R	LZ	X	Υ	Z	X	Υ	X	Y	Z	R	LZ	r
- Pi	26	255	434	-434	944	- 90 -	- 6-	17	-17-	37	_1	10	- 61
	26	255	-424	424	944	- 90 -	_ 0_	_17_	<u>-1</u> 7_	27	_ 1	_10_	61
	26	255	179	-459	944	0	90	7	-18	37	1	10	49
+	2 6	25 5 —		434	816-		-0-	+ - 0 -	- 1 7 -	- 3 2 -	-1-	1 0	- 43
P2_2	22	204	-102	173	803	_ 0_	90	4 -	6.8	31.5	0.87	- 8 -	20
In-plane	22	-204 -	173	102	- 803 -	-90-	_0 _	6.8 -		31.5	0.87		20
	22	-204 -	-1 73-	1 02	- 803 -	-90-	-0-	- 6.8 -	-4-	-3 1. 5-	- 0.8 7-	_ & -	- 20
P2_1	22	204	-0-	-173	905 -	- 6	-0-		-6.8	35.5	0.87	 -	- 1
ut plane	-22 -	204	-189	_0_	905 -	_ e	_0_	-7.4		35.5	0.87		15
	-22 -	_ 204 _	-189	_0_	905 —	_ c	_0_	7.4		35.5	0.87		- 1
P4	22	204	-444	-444	3111	90 -	_0_	-17.4	-17.4	12z	U.87	8	- 6.
	-22 -	- 204 -	444	444	3111	- 90	-0-	17.4	17.4 -	122	0.87	_ & _	- 6
	-22 -	- 204 -	-102 -	444	3111-	- e	-9 0-	-4-	17.4	-122	0.87		_ 4
P5	34	255	271	-135	3264	90	_0_	10.625	-5.3125	128	1.35	10	- 31
i n plan e	-34	- 255 -	-271 -	-1 35	- 3 26 4-	- 90- -	-0-	-1 0. 625	-5.3125	128	1. 35	- 40 -	- 34
	- 34 -	- 255 -	-135 -	271	- 3 26 4-	- 6	-9 0-	-5 .3 12 5	10.625	128	1. 35	- 10 -	- 3
P5	34	255	288	0	3417	- 0	-0	11.3	- 0 -	134	1.35	10	_ 2
u t plane	-34	- 255 -	-288	-0-	3417	- 0	-0-	-11.3	- -	134	1.35	- 10 -	- 26
	-34	- 255 -	_ 0	-2 71	3417	- 0	-0-		-10.625	-134	1.35	- 10 -	- 27

- ⇒ I crossed out everything beyond the z-bounds of the map in **blue** (I did one on the edge of z in cyan as these are likely very very small)>
- ⇒ I crossed out anything greater than the maps rmax in magenta.
- ⇒ Remaining is a single element in orange.

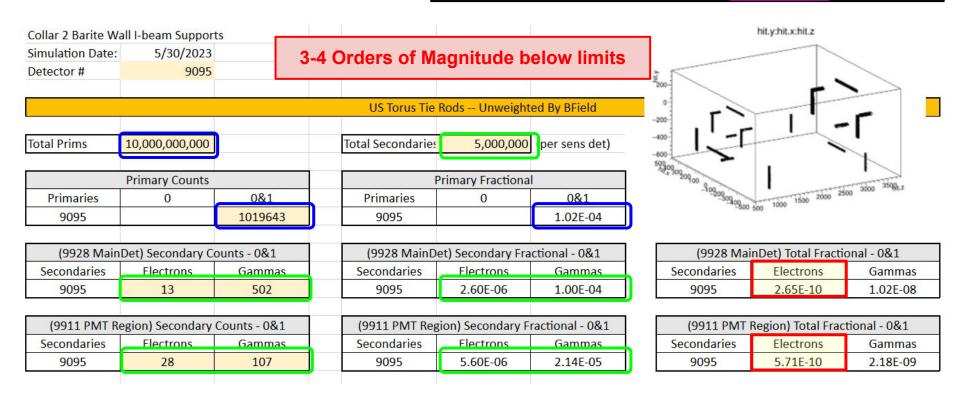
Weighting doesn't do much of anything here. In the secondary sim no charges came from here although two photons did.

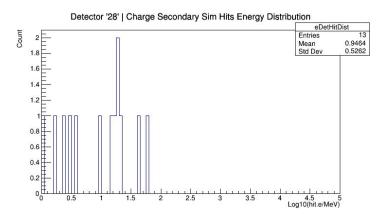
9095 – US Torus Tie Rods

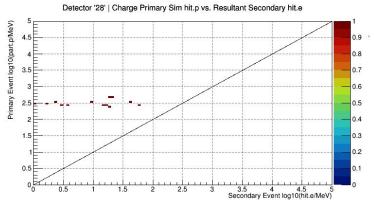

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

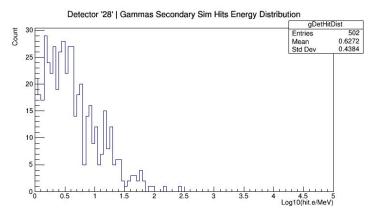
Probably should have run more secondaries...

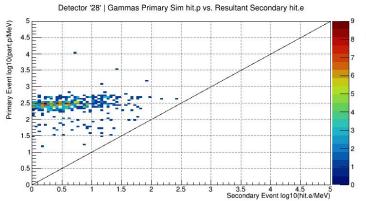
9095 – US Torus Tie Rods


Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

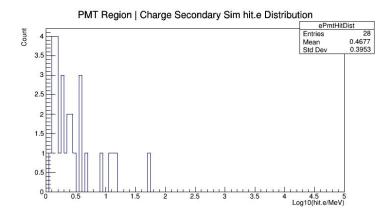

Probably should have run more secondaries...

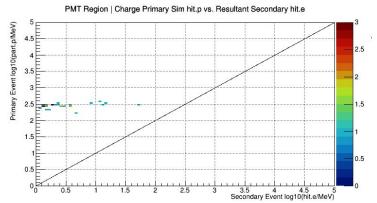

9095 – US Torus Tie Rods

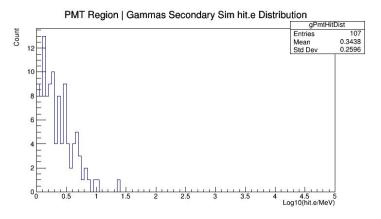

Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

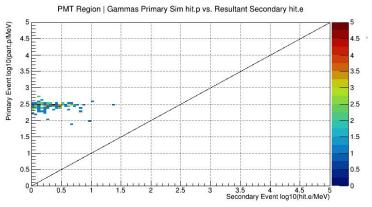


Detector Hits







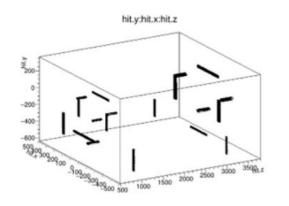


PMT Region Hits


Particle event vertices from secondary events

These are the generated particles and not the hit vertices.

Seems that the hot spot from the primary is the region where most secondary hits come from... this is unsurprising.


Why is that spot bad???

MAIN POINT: US Torus Tie Rods

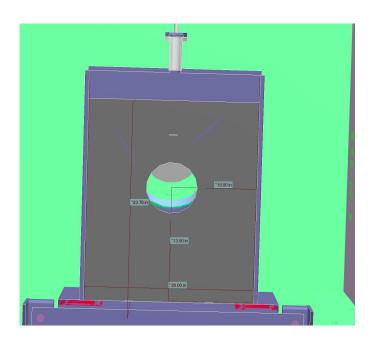
Material	X_r	Spin Polarization (P_f)	Frac e- on Target	Frac of events Per Moller
Mild Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

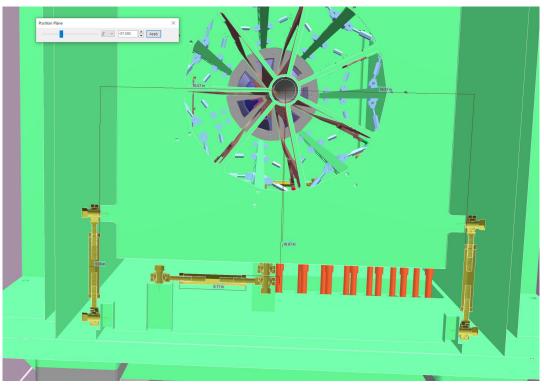
(9928 Mai	nDet) Total Fracti	onal - 0&1
Secondaries	Electrons	Gammas
9095	2.65E-10	1.02E-08

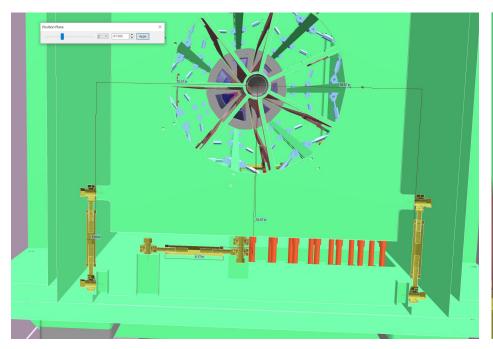
(9911 PMT F	Region) Total Frac	tional - 0&1
Secondaries	Electrons	Gammas
9095	5.71E-10	2.18E-09

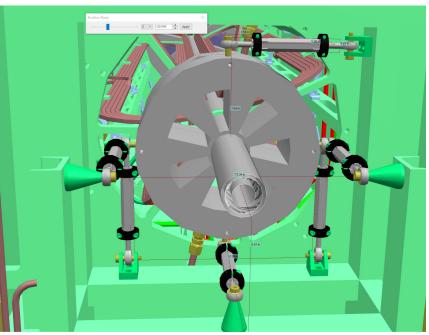
Assumption:

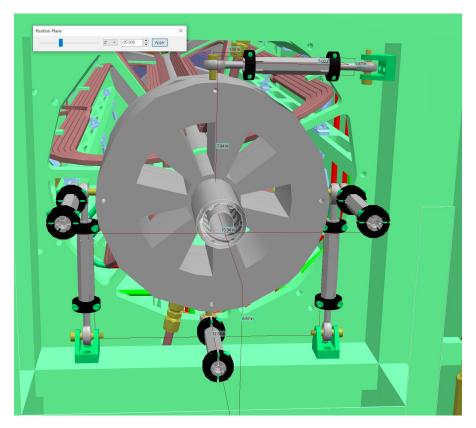
 Outside the field map used for simulation we still encounter possible fields of say 50-100 gauss


The computed ferrous backgrounds of 10⁻¹⁰ per e.o.t. would be weighted and give a 10⁻⁸ 'ish per e.o.t


The tolerable magnetic susceptibility for the background rate is $X_r \sim 1$


For worst-case brass/bronze $X_r \sim 0.001$


We're safe under very-conservative estimates by around three orders of magnitude considering the worst possible case of 100G fields beyond the map and worst magnetic quality brass.


Original images from Ciprian

