

#### Compton Electron Detector for the MOLLER Experiment

MOLLER Collaboration Meeting May 2023

Nafis Niloy

**Garrett Leverick** 

Kristofer Isaak

Shefali Prabhakar

Dr. Jie Pan

Dr. Michael Gericke

Jefferson Lab

Department of Physics and Astronomy, University of Manitoba



#### **MOLLER Experimental Setup**





ParameterValueIncoming electron Energy, E [GeV]
$$\approx 11.0$$
Scattered electron Energy, E' [GeV] $2.0-9.0$ Scattered angle,  $\theta_{lab}$  [mRad] $5-19$  $< Q^2 > [GeV]$  $0.0058$ Max. beam current  $[\mu A]$  $70$ Cross section scatter area,  $\sigma$   $[\mu barn]$  $\approx 60$ Møller event rate @ 65  $\mu A$  [GHz] $134$ Beam polarization  $P_{beam}$  $\approx 90\%$ Measured  $A_{PV}$  [ppb] $32$  $\delta(\sin^2 \theta_W)_{stat}$  $0.00023$ 

The experiment requires the measurement of the polarization of the electron beam to better than 90 ± 0.5 % in order to meet experimental goals

### **Compton Polarimetry**



- Uses Compton Scattering to measure electron polarization as a function of scattered photon/electron energy
- Electron energy is related to recoil momentum
- Magnetic fields in dipole D3 will deflect electrons based on their momentum
- Higher photon energy after scattering  $\rightarrow$  lower electron energy  $\rightarrow$  larger bend radius in D3
- Therefore, position of deflected beam relative to un-scattered beam line can be used to calculate electron beam polarization
- Requires a detector to accurately measure 'deflection' of electron beam with respect to un-scattered beam
- Use HVMAPS to precisely locate deflected electron path





HVMAPS (MuPix 10) with periphery section highlighted in yellow

### **Compton Polarimetry**



- 4 detector planes with **HVMAPS**
- 2 x 2 cm<sup>2</sup> detectable area per **HVMAPS**
- 3 HVMAPS per plane, for a ٠ total detectable area of 2 x 6 cm<sup>2</sup> on each plane

Δθ

Primary Beam

GSO





D₄

Photon Detector

#### **HVMAPS Electron Detectors**



- Hybrid pixel sensors based on HV-CMOS technology
- Each pixel dimension is 80 x 80  $\mu$ m<sup>2</sup>, spread across a 250 x 256 grid
- Overall size of detectable area = 2 x 2 cm<sup>2</sup>
- Can be as thin as 50 microns (low material budget)
- Readout electronics, filters and amplifiers all integrated into the chip.
- Timing resolution of 16 ns with peak detection rate of 30 MHz
- Generates about 1W of heat during peak operation
- Operating temperature should not (ideally) exceed 70 degrees Celsius











### **MuPix 8 Thermal Performance Testing**





#### MuPix 8 Thermal Performance





### **Design Intent and Challenges**



- Detector planes will be under vacuum, thus complicating cooling options
- Directly cooling the HVMAPS via forced convection on chip surface not possible
- Best method would be to conduct the heat away from the HVMAPS to a sink
- Design and implement an integrated cooling and mounting structure to conduct heat away from the HVMAPS to a liquid-cooled heat exchanger
- Generous use of copper (high thermal conductivity) and thermal pads between interfaces

### Existing vs. New Detector Assembly





### Metal-core PCB for HVMAPS





- PCB designed by Dr. Jie Pan, University of Manitoba
- HVMAPS will be glued and wire-bonded to the PCB
- Metal-core PCB will help conduct heat produced by the HVMAPS away for dissipation
- Exploring the idea of using thermal pads to improve thermal conduction between metal-core PCB and HVMAPS

### New HVMAPS Mounting and Cooling Assembly



- Each detector plane consists of 3 HVMAPS wire-bonded to a metal-core PCB
- 1 J1 connector to read out data from each plane
- Two planes will be attached to one cooling block, interfaced together using thermal pads
- Gentle, yet firm pressure required to compress thermal pad between detector plane and cooling block for maximum thermal conduction
- Cooling block will be a single piece of machined copper (different color used in figure for ease of visibility)

# **Cooling Blocks and Heat Exchanger**





- Both cooling blocks will be attached to either side of the copper heat exchanger using 5 fasteners (red arrows)
- Applies a clamping pressure of 4000 psi between mating heat-exchanger components
- Maximizes conduction between components
- Heat exchanger will be machined out of a single block of copper
- Distance between two adjacent HVMAPS planes is 12.6 mm

### Heat Exchanger and Shaft





- Shaft holding the assembly in beam line will be attached to a linear translation stage to move detector planes up and down
- Translation stage attached via a feed-through
- Shaft will be a copper rod with coolant channels bored along its length
- Will be using LCW (Low Conductive Water) as coolant
- Pocket is designed to make the flow of coolant turbulent, thereby increasing heat transfer to coolant
- Shaft and heat exchanger will be brazed to prevent possible leaks

# CFD Simulations (by Shefali)



Temperature distribution of overall assembly



Temperature variation of coolant as it moves closer to the heat exchanger



Temperature variation of coolant inside the heat exchanger

# Still working on...



- An updated assembly including thermal pads on the top/bottom of the periphery side of the HVMAPS to further improve cooling efficiency
- Use simulations to optimize size/geometry of cooling block to minimize electron scattering inside block
- Modifications to align detector planes at a fixed angle (normal to beam line)
- Assembling a prototype to study the performance of current cooling setup inside a vacuum with HVMAPS operating at maximum capacity



Summary

- Studied thermal performance of prior version of HVMAPS (MuPix 8) in a vacuum
- Designed integrated mounting and cooling assembly to replace
- current strip detectors with HVMAPS
- Simulations show that the current integrated design is capable of maintaining the HVMAPS at < 30 C</li>
- Design will undergo gradual modifications to increase efficiency of cooling system





# Thank you