



## Ring 5 HVMAPS

## MOLLER Collaboration Meeting May 2023

**Michael Gericke** 

- Motivation
- Operational principle
- Readout setup
- Cabling Plans
- Housing/Mounting/Cooling Kristofer Isaak







#### Motivation:

- The precise and correct measurement of the asymmetries depends on the correct event separation in the detector tiles, as indicated by the ideal event profile.
- Changes in beam properties and magnetic field non-uniformities lead to shifts in the event profile and change the measured event type share in a given tile.
- If these changes are helicity correlated this can lead to a false or incorrectly extracted asymmetry.
- Careful periodic tracking measurements with the GEM detectors event mode will verify the kinematics and the associated event profile at low current.
- The HVMAPS can be used as another tracking plane behind the ring 5 detectors at these lower currents, together with the GEM detectors.
- They could provide a measurement of background events created between the GEMS and ring 5.
- They can verify the profile at high beam currents due to their radiation hardness and high event processing speed (at fully beam current they have to be gated).







#### Motivation:

#### CFI funded parts

- 1. 2352 Pixel chips: 28 per ring 5 tile
- Mounting structure (including flex-print) 2.
- Cooling equipment 3.
- Front-end boards with IpGBT and VTRX+ (CERN) 4.

Primary e- Rate (GHz/uA/25mm^2), Main Detector Plane, >1MeV

- 5. Cabling
- Power supplies 6.
- 7. **FPGA** boards





10<sup>-6</sup>

-700 -600

x(mm)

rate (GHz/sep/uA/(5mm)^2) vs xy(mm^2)







### **Operational principle:**

- The final size of the individual chips is ~20 mm by 23 mm
- 64000 pixels per chip ( $80 \ \mu m \times 80 \ \mu m$ )
- Several of them are to be combined to form a plane of whatever size is needed









#### Summary of HV-MAPS operation (with figures by Heiko Augustin, Alena Weber, and Andre' Schoening – U. Heidelberg)

- There are three distinct areas of the chip:
  - 1. The pixel area, in which each of the 64000 pixels include an amplifier and a line driver to connect the pixel to the periphery
  - 2. The mirror pixel area at the chip periphery, which includes two tunable ToT comparators
  - 3. Three state machines at the chip periphery and a mux for data transfer







- Signal digitization and time stamp generation:
  - 1. Each pixel drives the amplified hit signal to a dedicated readout buffer at the chip periphery
  - 2. The two comparators for each pixel are part of the readout buffer circuitry
  - 3. The readout buffer generates two timestamps. The first one sets the hit latch. The second one establishes the ToT proportional to the collected charge and reduces time-walk effects.
  - 4. The buffer stores an 8b pixel row address and the two timestamps (TS1 = 11b and TS2 = 5b)









- Chip event readout organization:
  - 1. The chip is readout in column-drain and row readout sequence. There are 250 rows and 256 columns
  - 2. Pixels buffers with hits are transferred to an EoC (End of Column) cell, selected by a priority logic.
  - 3. If a pixel buffer hit state is transferred to the corresponding EoC, the buffer is cleared and the pixel is sensitive to new hits again.
  - 4. The EOC contains an 8b column address and collects the full 32b hit information
  - 5. The priority chain within a column is based on pixel position and hit time
  - 6. The state machine generates signals to transfer the pixel hit information to the EoC and transfer the 32 bit EoC data to the serializer
  - 7. The 32b data words are byte serialized and 8b/10b encoded























Event Sequence:

**Signal** 







- **Event Sequence:**
- Signal
- Amplification







- Signal
- Amplification
- Transmission to periphery







- Signal
- Amplification
- Transmission to periphery
- Storage in the buffer (pixel cleared for next event)







- Signal
- Amplification
- Transmission to periphery
- Storage in the buffer (pixel cleared for next event)
- Digitization of the hit







- Signal
- Amplification
- Transmission to periphery
- Storage in the buffer (pixel cleared for next event)
- Digitization of the hit







- Signal
- Amplification
- Transmission to periphery
- Storage in the buffer (pixel cleared for next event)
- Digitization of the hit
- Scalar generated from clk







- Signal
- Amplification
- Transmission to periphery
- Storage in the buffer (pixel cleared for next event)
- Digitization of the hit
- Scalar generated from clk
- Timestamp generation







- Signal
- Amplification
- Transmission to periphery
- Storage in the buffer (pixel cleared for next event)
- Digitization of the hit
- Scalar generated from clk
- Timestamp generation
- Hit/pixel address and timestamp sent to serializer







**Event Sequence:** 

- Signal
- Amplification
- Transmission to periphery
- Storage in the buffer (pixel cleared for next event)
- Digitization of the hit
- Scalar generated from clk
- Timestamp generation
- Hit/pixel address and timestamp sent to serializer
- Data sent to readout board

Maximum readout rate is 33 MHz per link with a maximum of 3 links per chip.







Minor modifications to final chip:

- Match the on-chip clk to the CERN readout chip frequency
- A simple AND with a GATE link before each pixel buffer to turn on/off the readout – timed to choice to reduce pixel occupancy

These changes are relatively simple and underway.

Need to resubmit for one more engineering run

Then go to chip production – hopefully at the end of the year





We need to design and prototype a readout board that incorporates 4 IpGBT chips and 1 VTRx+, plus bias and LV power supply distribution.

**Starting point:** The bord schematics/design is available to us from CERN.

We can remove quite a few of the test/diagnostic components and want to make the board smaller for the ring 5 detectors, while incorporating 4 IpGBTs rather than 1.

Development is ongoing:

We have access to an engineer at Carleton Univ. through the Canadian SAP Major Resources Support network

To be mostly completed by end of June







- We want 3 lpGBTs in slave mode and 1 lpGBT as master
- Slow-Control the lpGBTs via the of the down/uplink data stream from the back-end FPGA. This field allows to read and write the internal registers if the chip operates as a Transceiver (master).
- The VTRX+ has 4 uplinks (10.24 Gb/s) and one downlink (2.56 Gb/s) so we can read out
- Need to determine if we need the FEASTMP DC/DC converters or can run via remote power control
- We can use the Samtec <u>ASP-134486-01</u> FMC connector (female)
- Maximum board width 100 mm
- Maximum board length 200 mm
- Mounting holes can be relocated within the lower 50 mm of the board.







Conceptual schematic of the readout and control setup.

With 1.28Gb/s (TX) und 80 Mb/s (RX) we can read out 7 MAPS with one lpGBT.

Use 3 lpGBT as simplex transmitter and 1 lpGBT as transceiver (same mode as used by CMS).

Using this configuration we can use one VTRx+ to read out 28 MAPS

TX = Detector  $\rightarrow$  Counting Room,

RX = Counting Room  $\rightarrow$  Detector



76 cables per module x 84 modules





- ٠
- Maintain insolation and distance for HV bias
- Impedance control for differential pairs
- ٠
- Trace delay tuning for high-speed signal synchronization •
- Edge overlap design to minimize gaps between strips •
- Arrange high density connectors sideway to ease the assembly and installation ٠
- Maximize widths of power and ground traces to allow large current flow at minimized low
- voltage drops ٠

#### For each Ring 5 Quartz tile: TAB-bond 7 chips to a flex-print, have 4 such strips per detector



**Design is done, preparing for making prototypes** 

- **Design Considerations:**

- Minimize cross-talks



For each Ring 5 Quartz tile: TAB-bond 7 chips to a flex-print, have 4 such strips per detector

#### Simple FPC insertion **Flip-lock**









## Mounting:

#### Ring 5 Quartz tile HVMAPS in the MD array:



# More updated mounting geometry in Kristofer's talk







## Back-end DAQ:

- Need an array of commercial FPGA boards like the Xilinx kcu105
- Or something like the Arista 48/96 LS fiber switch



#### Hardware

| Description             |                                                                                | Price       | Qty       | Ext. Price   |
|-------------------------|--------------------------------------------------------------------------------|-------------|-----------|--------------|
| DCS-7130-48LS-F         | Arista 7130 Series 48L with UltraScale VU7P-2 FPGA, front-to-rear air, 2xAC v2 | \$31,027.07 | 1         | \$31,027.07  |
| SVC-7130-48LS-<br>1M-NB | 1-Month A-Care Software & NBD Hardware Replacement/Same Day Ship for 7130-48LS | \$294.55    | 60        | \$17,673.00  |
| DCS-7130-96LS-F         | Arista 7130 Series 96L with UltraScale VU7P-2 FPGA, front-to-rear air, 2xAC v2 | \$51,041.78 | 1         | \$51,041.78  |
| SVC-7130-96LS-<br>1M-NB | 1-Month A-Care Software & NBD Hardware Replacement/Same Day Ship for 7130-96LS | \$483.06    | 60        | \$28,983.60  |
| SFP-10G-SR-P            | Arista 10GBASE-SR SFP+ (Short Reach)                                           | \$74.80     | 48        | \$3,590.40   |
| TARIFF FEE              | Logistics Fee                                                                  | \$8,258.66  | 1         | \$8,258.66   |
| FREIGHT.                | Shipping & Handling                                                            | \$150.00    | 1         | \$150.00     |
|                         |                                                                                | •           | Subtotal: | \$140,724.51 |

| Quote Summary  | Amount       |
|----------------|--------------|
| Hardware       | \$140,724.51 |
| Subtotal:      | \$140,724.51 |
| Estimated GST: | \$7,036.22   |
| Estimated PST: | \$9,850.71   |
| Total:         | \$157,611.44 |



## ack-enu DA





#### Main detector low voltage cables and power supplies

#### 2. HVMAPS

- 84 modules with 28 chips per module. Need three different LV connections for each module (2V, 1.2V, 2.5V) and one "HV" connection (≲ 100 V) for bias
- LV powers the chip itself and the readout electronics

#### Per Module:

- Chip supply voltage:  $V_{chip} = 2V @ 0.5A \times 28$  (parallel)
- Readout IpGBT:  $V_{lpBGT} = 1.2V @ 0.27A \times 4$
- Readout VTRX+:  $V_{VTRX} = 1.2V @ 0.045A + 2.5V @ 0.080A$
- Bias:  $V_{bias} = 100V @ 0.02A$
- Largest power:  $P_{chips} \simeq 34 W$  (includes ~20% safety factor)
- Total power:  $P_{tot} \simeq 38 W$  (includes ~20% safety factor)

#### Cables:

- Voltage drops:
  - Flexprint to R5 readout:  $\Delta V \sim 0.15 V @ 3.5 A$ ٠ R5 readout to segment patch panel:  $\Delta V \sim 0.16V$  @ 3.5 A AWG 18 (VDD + GND = 24 cables/segment) ٠  $\Delta V \sim 0.56V$  @ 1.75 A AWG 15 (Split VDD and GND into two AWG 15 = 48 cables) Segment patch panel to GEM hut: ٠ GEM hut floor to PS unit:  $\Delta V \sim 0.12V @ ? A$ AWG ? (Depends on PS unit we choose) ٠ Total:  $\Delta V \leq 1V$ (Depending on PS unit we chose) ٠





|                        | ~2 m AWG ? floor to unit | t ~10 i | m AWG 15 along floor                   | At array floor level 🖌 🖌                  | a AWG 15 around array                                                                              | At seg. patch                                                                            | ~1 m AWG 18 seg-p. to mod. |         |
|------------------------|--------------------------|---------|----------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|---------|
| PS Unit<br>168 A @ 2V  |                          |         | 4 segments<br>12 modules<br>192 cables | Separate to segments<br>-> 48 cables each | Sp<br>15<br>                                                                                       | olice pairs of AWG<br>5 into one AWG 18 to<br>In to R5 modules 24<br>Ibles per segment   |                            |         |
| PS Unit<br>168 A @ 2V  |                          |         | 4 segments<br>12 modules<br>192 cables | Separate to segments                      | Sp<br>15<br>rui<br>ca                                                                              | olice pairs of AWG<br>5 into one AWG 18 to<br>10 to R5 modules 24<br>10 bles per segment |                            |         |
| PS Unit<br>168 A @ 2V  | ]<                       |         | 4 segments<br>12 modules<br>192 cables | Separate to segments                      | Sp<br>15<br>ru<br>ca                                                                               | blice pairs of AWG<br>5 into one AWG 18 to<br>in to R5 modules 24<br>ibles per segment   |                            |         |
| PS Unit<br>168 A @ 2V  | ]<                       |         | 4 segments<br>12 modules<br>192 cables | Separate to segments                      | Sp<br>15<br>                                                                                       | blice pairs of AWG<br>5 into one AWG 18 to<br>in to R5 modules 24<br>ibles per segment   |                            | Chips   |
| PS Unit<br>168 A @ 2V  | <                        |         | 4 segments<br>12 modules<br>192 cables | Separate to segments                      | Sp<br>15<br>ru<br>ca                                                                               | blice pairs of AWG<br>5 into one AWG 18 to<br>10 to R5 modules 24<br>10 bles per segment |                            |         |
| PS Unit<br>168 A @ 2V  | ]<                       |         | 4 segments<br>12 modules<br>192 cables | Separate to segments                      | Sp<br>15<br>15<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | blice pairs of AWG<br>5 into one AWG 18 to<br>10 to R5 modules 24<br>10 bles per segment |                            |         |
| PS Unit<br>168 A @ 2V  |                          |         | 4 segments<br>12 modules<br>192 cables | Separate to segments                      | Sp<br>15<br>ru<br>ca                                                                               | olice pairs of AWG<br>5 into one AWG 18 to<br>In to R5 modules 24<br>Ibles per segment   |                            |         |
| PS Unit<br>7 A @ 2.5V  | <                        |         | All segments<br>56 cables              | Separate to segments                      | AV<br>to<br>2 c                                                                                    | WG 15 into AWG 18<br>run to R5 modules<br>cables per segment                             |                            |         |
| PS Unit<br>100 A @ 1.2 | 2V                       |         | All segments<br>112 cables             | Separate to segments                      | Sp<br>15<br>ru<br>ca                                                                               | blice pairs of AWG<br>5 into one AWG 18 to<br>In to R5 modules 2<br>Ibles per segment    |                            | Readout |
| PS Unit<br>2 A @ 100V  |                          |         | All segments<br>56 cables              | Separate to segments<br>-> 2 cables each  | AV<br>to<br>2 c                                                                                    | WG 15 into AWG 18<br>orun to R5 modules<br>cables per segment                            |                            |         |





#### Main detector low voltage cables and power supplies

2. HVMAPS

#### **PSU Series**

• Single channel high current

| SPECIFICATIONS                |           |
|-------------------------------|-----------|
| MODEL                         | PSU 6-200 |
| OUTPUT RATINGS                |           |
| Rated Output Voltage (*1)     | 6V        |
| Rated Output Current (*2)     | 200A      |
| Rated Output Power            | 1200W     |
| RIPPLE AND NOISE(*5)          |           |
| СVp-р( 10 ~ 20MHz) p-р (*6)   | 60mV      |
| CVrms(5Hz ~ 1MHz) r.m.s. (*7) | 8mV       |
| CCrms(5Hz ~ 1MHz) r.m.s.(*12) | 400mA     |
| LOAD REGULATION               |           |
| Voltage(*4)                   | 2.6mV     |
| Current(*11)                  | 45mA      |
| LINE REGULATION               | I         |
| Voltage(*3)                   | 2.6mV     |
| Current(*3)                   | 22mA      |
|                               |           |







Backups











#### **Chip-to-flexprint connections:**

- Single LVDS pair readout per chip at ~180 Mbps
- 7 chips ~ 1.28 Gbps
- 14 lines per chip through flexprint and ribbon
- Clk\_P/N from lpGBT
- S\_In\_P/N chip addressing through IpGBT slow control
- SYNC\_RES\_P/N chip gating (or similar) also through IpGBT
- Rest of the lines are voltage distribution

|                |              |          |                | MPX            |
|----------------|--------------|----------|----------------|----------------|
| CLK_N >-       |              |          | 1              | CLK_N          |
| CLK_P >-       | CLK_P        |          | 2              | CLK_P          |
| S_IN_N -       | S_IN_N       |          | 3              | S_IN_N         |
| S_IN_P         | S_IN_P       |          | 4              | S_IN_P         |
|                |              |          |                |                |
| DATA_A_P       | DATA A P     |          | 5              | DATA_A_P       |
| DATA_A_N -     | DATA_A_N     |          | 6              | DATA_A_N       |
| DATA B P       | DATA B P     | _        | 7              | DATA_B_P       |
| DATA_B_N       | DATA_B_N     |          | 8              | DATA_B_N       |
| DATA C.P.      | DATA_C_P     |          | 9              | DATA C P       |
| DATA C N       | DATA_C_N     |          | 10             | DATA C N       |
|                |              |          |                |                |
| Decet/aste     |              |          | 11             | SYNC_RES_P     |
| Reset/gate     |              | _        | 12             | SYNC_RES_N     |
|                |              |          | 13             | V_IN_DL        |
|                |              |          | 14             | SHUNT_DL       |
|                |              |          | 15             | V_OUT_DL       |
|                |              | -        | 16             | VDDD_L1        |
|                |              | +        | 1/             | VDDD_L2        |
|                |              |          | 10             | V_IN_AL        |
|                |              |          | 20             | SHUNT_AL       |
|                |              |          | 21             | V_OUT_AL       |
|                |              | 1        | 22             | VDDA_L1        |
|                |              |          | 23             | VDDA_L2        |
|                |              |          | 24             | VSSA I         |
|                |              |          | 25             | GNDD 1         |
|                |              |          | 26             | GNDA 1         |
| TEMPERATURE    | TEMPERATURE  |          | 27             | TEMPERATURE    |
| A_0 )-         | A 0          |          | ×              |                |
| A_1 -          | A_1          |          | — ×            |                |
| A_2 -          | A_2          |          | - ×            |                |
| A_3 -          | A_3          |          | $+\times$      |                |
| CON_RESISTOR - | CON RESISTOR |          | <del>- ×</del> |                |
| VOD SENSE      | VDD_SENSE    |          | 33             | V HICH         |
| GND SENSE      | GND_SENSE    |          | 34             | V LOW          |
|                |              |          | 35             | USE SPI        |
|                |              | -        | 36             | ENABLE SC      |
|                |              |          | 27             |                |
|                |              |          | 38             | POWER_ON_RESET |
|                |              |          | 39             | RES_N          |
|                |              |          | 40             | V_IN_UR        |
|                |              |          | 41             | SHUNI_UK       |
|                |              |          | 42             |                |
|                |              |          | 43             | VDDD R2        |
|                |              | I        | 44             | V IN AR        |
|                |              |          | 45             | SHUNT AR       |
|                |              |          | 46             | V_OUT_AR       |
|                |              | -        | 47             | VDDA_R1        |
|                |              | •        | 48             | VDDA_R2        |
|                |              |          | 49             | V_OUT_SR       |
|                |              | <u>ц</u> | 50             | VSSA_R         |
|                |              |          | 52             | GNDD_2         |
|                |              |          | 02             | GNDA_2         |
|                |              |          | 53             | VDDD R3        |
|                |              |          | 54             | GNDD 3         |
|                |              |          | 55             | VDDA R3        |
|                |              |          | 56             | GNDA 3         |
|                | 10V          |          | 67             |                |
| HV -           | nv           |          | 1 5/           | SUBSTRATE      |
|                |              |          |                |                |





### VLDB:

- Item 1: Core parts needed 4 IpGBT, 1 VTRX+
- Item 2: FEASTMP may not be needed. Use remote power from PS unit (see slide 6) need to implement a sense wire maybe can use them though
- Item 3: Not needed mode selection should take place via the downlink interface
- Item 4: Needs to be re-designed to supply power to the IpGBTs , the VTRX+, and to the HCMAPS chips
- Item 5: Not needed startup configuration and operation mode need to be "hard wired" by pulling control pins high/low with resistors
- Item 6: Not needed
- Item 7: Not needed reference clock should come through downlink, but the lower two connectors could be kept for benchtop testing/prototyping
- Item 8: Could be kept for prototype testing
- Item 9: Not needed but might be useful for testing







#### **VTRX+ Info:** From VTRX+ CERN Manual Fiber optic transceiver ٠ Versatile Link PLUS 4 upstream channels (sum = 10.24 Gb/s) ٠ Backend Tx 1 downstream channel (2.56 Gb/s) ٠ 20 cm pigtail with female MT terminator ٠ Laser Driver Needs to have MT-MPO (male) adapter or other to connect to ٠ (Array) Passives standard fiber FPGA TIA lpGBT -Versatile Link Plus Transceiver Multi-mode fibre **Backend Rx** VTRx+ **On-Detector** Off-Detector Multi-mode MT ferrule Custom Electronics & Packaging Commercial Off-The-Shelf (COTS) Radiation Hard on-board 12Tx, 12Rx module Up to 4Tx plus 1Rx









#### **CERN Chips Details**





New HVMAPS chip production to start in 2023:

- Implement gated readout from chip
- Adjust design to match the IpGBT protocol
- Can use one lpGBT for 7 HVMAPS
- Can use one VTRx for 4 lpGBT chips
- Readout 28 HVMAPS with this combination
- Need 84 fiber connections (VTRx)
- Need 336 of the lpGBT chips
- Readout (TX) at 1.28 *Gb*/*s*
- RX at 160 *Mb/s*



# M

#### Status:

- CERN shipped all of the lpGBT chips to Manitoba
- VTRX+ chips are coming in the next few months
- We have one of the CERN prototype readout boards. The VTRx+ can be used for prototype development
- Design of the MAPS module, flexprint, cooling, interposer is progressing well
- Commercial Xilinx FPGA backend solution is being identified and priced out
- Power supply and bias system (cabling and control) is currently based on direct remote control, but possible DC/DC conversion closer to the readout board is being considered.







- Chip connections:
  - 1. There will be 4 differential outputs (8 lines) per chip that are connected to the lpGBT:
    - 1. Clock (Clk\_n/p)
    - 2. Data-out (DOut\_n/p)
    - 3. Gate\_n/p
    - 4. Addressing (Sin\_n/p)
  - 2. There could be one more digital temperature signal from each chip to the lpGBT input (TBD)
  - 3. All signals except the temperature diode are LVDS
  - 4. Target TX speed is 1.28 Gbps (~180 Mbps per chip to lpGBT)
  - 5. Target RX speed is 80 Mbps (from lpGBT to chip)





#### **Power and Bias**

- Remote LV control cable design for the HVMAPS tracking detector
- We would need ~2 of these per segment
- Shorter cable is definitely better ...
- We would need three fiber connections per segment



| Outer Group                                           |                                                                                                                     |                              |                                     |                                    |                        |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|------------------------------------|------------------------|--|
| Cor                                                   | nductor No.                                                                                                         |                              | Count x Colour                      | Construction                       | n Electrical           |  |
| 1, 3, 5, 7, 9, 11<br>29, 31, 33, 35,<br>49, 51, 5     | 1, 3, 5, 7, 9, 11, 13, 19, 21, 23, 25, 27,<br>29, 31, 33, 35, 37, 39, 41, 43, 45, 47,<br>49, 51, 53, 55, 57, 59, 61 |                              |                                     | 1.5 mm²<br>(65 x Ø0.16)            | 27 A @ 2.0 V           |  |
|                                                       | 15, <mark>6</mark> 3                                                                                                |                              | 2 x WH                              | 1.5 mm²<br>(65 x Ø0.16)            | 2.25 A @ 1.2 \         |  |
|                                                       | 17                                                                                                                  |                              | 1 x BL                              | 1.5 mm²<br>(65 x Ø0.16)            | 0.4 A @ 2.5 V          |  |
| 2, 4, 6, 8, 10,<br>24, 26, 28, 30,<br>44, 46, 48, 50, | 12, 14, 16, 18, 2<br>32, 34, 36, 38, 4<br>52, 54, 56, 58,                                                           | 20, 22,<br>40, 42,<br>60, 62 | 31 x BK                             | 1.5 mm²<br>(65 x Ø0.16)            | 29.65 A @ 0 \<br>(RTN) |  |
|                                                       |                                                                                                                     |                              | Innor Group                         |                                    |                        |  |
| Pair No                                               | Colour                                                                                                              |                              | Construction                        | Flectrical                         |                        |  |
| 1                                                     | GN-WH                                                                                                               | 2 x 0 3                      | $22 \text{ mm}^2 (7 \times 00.203)$ | RSFN 2V0 P (2 V nom )              |                        |  |
| •                                                     | GN                                                                                                                  | 2 × 0.                       |                                     | RSEN 2V                            | 0 N (RTN)              |  |
| 2                                                     | YE-WH                                                                                                               | 2 x 0.2                      | 22 mm² (7 x Ø0,203)                 | RSEN 1V2 F                         | P (1.2 V nom.)         |  |
|                                                       | YE                                                                                                                  |                              |                                     | RSEN 1V                            | 2 N (RTN)              |  |
| 3                                                     | RD-WH                                                                                                               | 2 x 0.2                      | 22 mm² (7 x Ø0.203)                 | (7 x Ø0.203) RSEN 2V5 P (2.5 V nor |                        |  |
|                                                       | RD RD                                                                                                               |                              |                                     | <br>RSEN_2V5_N (RTN)               |                        |  |
| 4 BK-WH 2 x 0.                                        |                                                                                                                     |                              | 22 mm² (7 x Ø0.203)                 | 203) RSEN_HV_P (100 V nom.)        |                        |  |
|                                                       | ВК                                                                                                                  |                              |                                     | RSEN_HV_N (RTN)                    |                        |  |
| 5                                                     | GY-WH                                                                                                               | 2 x 0.2                      | 22 mm² (7 x Ø0.203)                 | 10 mA (                            | @ 100 V                |  |
|                                                       | GY                                                                                                                  |                              |                                     | 10 mA @ 0V (RTN)                   |                        |  |
| 6                                                     | PK-WH                                                                                                               | 2 x 0.2                      | 22 mm² (7 x Ø0.203)                 | 10 mA @ 100 V                      |                        |  |
|                                                       | PK                                                                                                                  |                              |                                     | 10 mA @ 0V (RTN)                   |                        |  |
| 7                                                     | BN-WH                                                                                                               | 2 x 0.2                      | 22 mm² (7 x Ø0.203)                 | TBD                                |                        |  |
|                                                       |                                                                                                                     |                              |                                     | TBD                                |                        |  |

















4

#### Appendix:

**CERN Prototype Board Schematics** 



3

1

B

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

**Appendix:** 

![](_page_41_Figure_4.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_4.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_4.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_1.jpeg)

![](_page_44_Figure_4.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_4.jpeg)

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

![](_page_46_Figure_4.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Figure_4.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

![](_page_48_Figure_4.jpeg)