Digital BCM Receiver Yury Kolomensky UC Berkeley/LBNL 06-May-23

On behalf of: Yuan Mei, Shuiie Li, John Arrington, Ernst Sichtermann

Beam Instrumentation Challenge Table 1: $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, as well as specification, as well as specification, as well as specifications and requirement precision, as well as specifications are specifications as well as specifications as wel

Requirements on the beam asymmetry: Δx or $A_Q = (Q_R - Q_L)/(Q_L + Q_R)$

Development of a direct-sampling RF receiver for precision beam charge measurements in the MOLLER experiment Source: MOLLER CDR. Requirements quoted for 1920 Hz helicity flip rate LBNL direct-sampling RF receiver is designed to satisfy the requirements on the beam charge resolution

Y. Mei¹, S. Li¹, J. Arrington¹, J. Camilleri¹, A. Cuda², J. Egelhoff², Yu.G. Kolomensky^{1,2} and E.P. Sichtermann¹

Published 12 April 2022 · @ 2022 IOP Publishing Ltd and Sissa Medialab

<u>Journal of Instrumentation, Volume 17, April 2022</u>
Citation Y. Mei *et al* 2022 *JINST* 17 P04006

05/06/2023 YGK, digital BCM for a precise determination of the fundamental parameter. MOLLER will aim to measure *ALR* with an experimental uncertainty of about 2012, corresponding to an unprecedent precision of an unprecedent pr

LER System architecture: digital RF receiver

- High sampling rate (\ge 3Gsps) and high dynamic range (>10bits) ADCs that are capable of direct RF sampling
- Amplitude fluctuation of LO doesn't contribute. Phase noise is small; modest contribution to the final uncertainty
- Filtering and decimation done digitally in ADC and/or FPGA
- Output: decimated data stream, integrated in 0.5 msec windows in FPGA or offline
- Implemented in a 4-channel prototype receiver box

\bullet ENERGY Signal \bullet 5.54 are commercial o-the-shelf and are connected using standard SMA coax cables. The part numbers of α

Single channel chain

Figure 3. The RF front-end signal processing chain of the sampling system with the part numbers.

Beam Test in Hall A in Sept 2020 (CREX)

Shujie Li

ee ee eile ee ee

Input: 1497 MHz RF signal

1. Direct sampling at 3072 Msps (14-bit, 10-bit ENOB)

 $x_i = A \cos(2\pi f_0 \theta_i)$ ENEDAY Office of **CSA** where $f_0 = 1497$ MHz, $f_{s_0} = 3072$ MHz, $\theta_i = \frac{i}{f_{s_0}}$

2. Digital Down Conversion (DDC) with tunable (numerical) LO

$$
I_i = x_i \cos(2\pi f_1 \theta_i + \phi), Q_i = x_i \sin(2\pi f_1 \theta_i + \phi).
$$

$$
y_i = I_i + jQ_i
$$
, two freq. $f_0 \neq f_1$ and $f_0 - f_1$.
filtered out

3. /16 decimation: keep 1 sample every 16 samples (selectable between 4-32)

 $fs = fs_0/16 = 192$ MHz

Final data stream: I/Q (16-bit each) at 192 Msps rate $(\sim 2 x 400 MB/s)$

 $\frac{1}{\sqrt{2}}$ signal amplitude was calculated from both software direct RMS calculation and down-conversion to the down-conversion DC followed by averaging. The measured the width of *ddf* distribution with respect to the integration

Define resolution as double-difference (ddf): $ddf = (A_A - A_B)/\sqrt{2}$

Figure 10. The width of the double-dierence as a function of the integration window size, measured during the

Figure 6. The distribution of relative distribution dierence, *relation to relation* **die relationships of the se** Bench test with beam generator: 8 ppm @ 2 kHz helicity rate

Figure 11. The distribution of relativistic distribution of relativistic relations Beam test with cavity signals: 25 ppm @ 2 kHz helicity rate

Potential sources of Beam Noise $^{\circ}$

Figure 7. The width of the double-dierence as a function of integration window size, measured during bench test. The vertical dashed line indicates 0.5 ms integration window, which is the MOLLER requirement. **Figure 10**. The width of the double-dierence as a function of the integration window size, measured during the beam test. The green curve, dentical test, DDC/16", is in figure 7 and in figure 7 and is shown for refout see caveats below window wind Additional ~20 ppm of beam-induced noise; appears to scale as 1/f Not seen (?) in CREX at ~120 Hz, but see caveats below

LER Potential sources of noise

- Large beam jitter (in particular position) during transition between the helicity windows
	- We did not sync to the helicity windows and we integrate over these transitions
	- If this is the source, it would be (fairly easily, FLW) handled by feeding the helicity signal into our data stream (needs to be done for MOLLER anyway)
	- Not clear though why it scales as 1/f
- Systematics in the BCM-based measurement ?
	- Halo and other losses between cavities that could scale as 1/f
	- Phase and tune drifts ? also scales as 1/f.
		- \triangleright Tested cables on the bench at LBNL but not in situ did not see a smoking gun

3RVL en 1980 van die 1980 van di
Gebeure H_{ER} Position dependence of BCM signal 10

To contribute to asymmetry, requires

- 1. cavity mis-alignment, and
- 2. time-dependent beam position a. beam position fluctuation
- - b. raster

Implies requirement on relative alignment of the cavity electrical centers to \sim 1mm or regression of BCM signal against BPM signals

Shujie Li

- There is nontrivial beam structure around the 1497 MHz carrier frequency: AMmodulated intensity
	- Time-multiplexing beam signals at \sim I MHz is dangerous and should be avoided
	- In discussion with JLab beam instrumentation group to remove mux from the JLab BCM readout (written in requirements document)
- Important to integrate BCM signals over the correct helicity windows
- Being able to regress/correct against beam position would be useful

is unknown, these peaks appear to originate from the beam and/or the cavity. The rest of the spikes

Figure 8. Power spectrum of a representative cavity signal induced by 130 µA beam. NCO is set to 1485 MHz and is digitally mixed with the input and then decimated by a factor of 16, resulting in an effective sampling rate of 192 MHz. The 1497 MHz input signal appears as two mixing product peaks marked 1 and 2 at 12 MHz and 90 MHz, respectively. Both I and Q are recorded and combined to compute the power spectrum via complex-input FFT, as shown in the left panel. The right panel shows a zoomed-in view around peak 1, which is of primary interest.

- Would ideally upgrade from NI digitizer+Xilinx FPGA to an integrated Xilinx Zynq RFSoC (e.g. ZU48DR on a ZCU208 eval board)
	- 8 channels (2) 5 GSPS, 14 bits: sufficient specs
	- FMC mezzanine slot, e.g. for helicity sync
	- ARM processor can run an instance of CODA
	- Similar architecture to the TRIUMF digitizers: can share firmware/software
	- Would need 1 module for BCMs, 2 if include BPMs
- Alternative is to duplicate our existing 4-channel box to read out 5 BCMs (and possibly 6 BPMs)
	- Would need 1-2 additional boxes
	- Helicity sync and DAQ interface more complicated
- Need to plan commissioning/beam tests carefully

Implementation in MOLLER

Implementation in MOLLER **MOLLER Incoming Beamline: System Requirements**

- - \mathcal{L} redundant position and microwave cavity position monitors separated by \mathcal{L} 10 minutors separated by \mathcal{L} • Some used for beam feedback and control: would need to split signals between MOLLER and JLab processors/DAQ
	- Could instrument all or some: absolute minimum would be 2 BCMs
- \blacksquare Ideally would amplify the signals in the Hall A laby • Ideally would amplify the signals in the Hall A labyrinth
- \blacksquare Microwave cavitation is to the electrical from beam \blacktriangleright • Ideally would retune BCMs for higher Q

Progress Since 2022

- No funding at Berkeley for this work have to scavenge for resources
- Procured RFSoC 4x2 kit (RFSoC-PYNQ) to test functionality **A** student brought it up, measured amplitude and phase
	- noise seems adequate
	- Developments synergistic with my other projects (and Aled is working with this board at UCSB) — can make some progress without MOLLER-specific funds
	- Incoming Berkeley graduate student interested in MOLLER will (hopefully) start working with this system in the Fall
- Ultimately, if MOLLER is interested in this technology, we'll need to find a way to pay for the development

- Internal noise (8 ppm) of the digital BCM processor satisfies MOLLER specs, could be further improved
- Notse performance in the beam test not (quite) up to spec; needs to be understood
- Need implementation and deployment/commissioning plan
- Started discussions with the DAQ group about integration with the DAQ
	- Ideally, BCM processor would look very similar to the MOLLER digitizers with the new Zynq RFSoC

Noise Budget

- Noise budget/requirements for $\sigma_Q/Q < 14$ ppm: assume fs=3 GHz and $\Delta T = 0.5$ msec
- Digitizer (white) noise $\frac{\sigma_Q}{Q} = 2^{-\text{ENOB}+3/2} \cdot \frac{1}{\sqrt{f_s \Delta T}}$ → ENOB > 8 bits
- Thermal noise: -124 dB @ 2 kHz for beam signal of -18 dBm $\rightarrow \sigma_Q/Q \sim 0.6$ ppm
- Phase noise (uncorrelated time jitter, though mindful of *1/f* contributions):

$$
\frac{\sigma_Q}{Q} \sim \frac{\pi f \sigma_t}{\sqrt{f_s \Delta T}} \rightarrow \sigma_t < 3.6 \text{ psec}
$$

- Simulation by Joe Camilleri: σ_t <~ 1 psec
- Spec of σ_0/Q <14 ppm achievable with currently available hardware

LER BCM Digital Receiver Prototype

- LDRD at LBNL
	- FY18: prototyping, bench tests
	- FY19: full hardware/firmware implementation, beam tests
- Prototype based in TI ADC32RF45 evaluation board and ADC capture card; stream raw data to disk $(-200$ msec \rightarrow 2 GB)
	- 14-bit ADC but limited to 12 bits by JESD204B interface with capture card
- Offline analysis (DDC, averaging, asymmetry analysis)

Joe Camillieri

- ERA Instruments ERASynth+: software-configurable, low-jitter RF generator; oven-controlled oscillator
- Use two phase-locked generators
	- 3 GHz clock
	- RF signal (<1.5 GHz)
	- Split signal between 2 input channels of the ADC (typically 9 dBm/channel)

Phase Noise Start 100 Hz

V Attn 0dB 2018-04-13 16:15 **xtRef2**

Stop 5 MHz

RF clock: phase noise LER

05/06/2023 YGK, digital BCM

Figure 27: ERASynth+ Phase Noise Performance at 3 GHz RF Output

Adequate for 10 ppm resolution

1 kHz pairs 1497 MHz, +9 dBm input signal per channel 3000 Msps, 12 bit digitizer \leftarrow ex 40

James Egelhoff

James Egelhoff

LER Systematics: phase drifts

• Quadrature sum of I/Q demodulated signals is relatively insensitive to slow phase drifts

$$
A = \sqrt{I^2 + Q^2}
$$

ENERGY Science **ESA**

- at the cost of 3 dB increase in noise
- Slow phase drifts with f<500 Hz cancel out to good precision in helicity quads
- Will simulate residual sensitivity to drifts of the cable delay (phase drift) and drifts of the cavity frequency
- Will develop firmware to monitor/calibrate cavity frequency
- If necessary, can deploy phase stabilization hardware developed for LCLS-II

- Naive calculation: assume that the phase shift is *uncorrelated* bunch-to-bunch, i.e. it is dominated by white noise
- Then σ_Q/Q <14 ppm \rightarrow to σ_φ <0.1 rad for bunch frequency of 250 MHz and 0.5 msec

the right

 $\mathcal{L}_{\mathcal{A}}$ is a superconduction f $\mathcal{L}_{\mathcal{A}}$. The superconduction f $\mathcal{L}_{\mathcal{A}}$

- α and σ_F of a few percent see • Such jitter seems unlikely: beam energy spread is $\sim \sigma_{\varphi}$ sin φ_{acc} , and σ_{E} of a few percent seems large
- However, correlated phase shifts could be a problem (correlates energy spread and charge error from cavity BCM)

Potential Systematics: beam phase jitter 24

- Cavity BCMs introduce one potential systematics into the measurement of charge: they do not measure beam charge directly
- Signal induced by each bunch is a projection of the its phasor onto the EM field phasor of the cavity, i.e.

 $\mathbf{E}_c \cdot \mathbf{E}_b \propto q_b \cos \Delta \phi$

- E.g. build a pair of cavities tuned to 4th harmonic, 998 MHz.
- They should not be that large, and can be anywhere in A-line

Do We Need to Worry? (thanks Kent)

- Consult beam physicists: they should know what the bunch phase jitter is and whether there is a large $1/f$ component
- If the phase jitter is large for us to worry about, can measure its effect on the BCMs by comparing cavities tuned to different harmonics of the bunch frequency

$$
\sigma(\phi_{\text{BCM}}) = 2\pi f_{\text{cavity}} \sigma(t_{\text{bunch}}) = \frac{f_{\text{cavity}}}{f_{\text{acc}}} \sigma(\phi_{\text{bunch}})
$$