
MOLLER collaboration meeting May 2023

Pion Detector

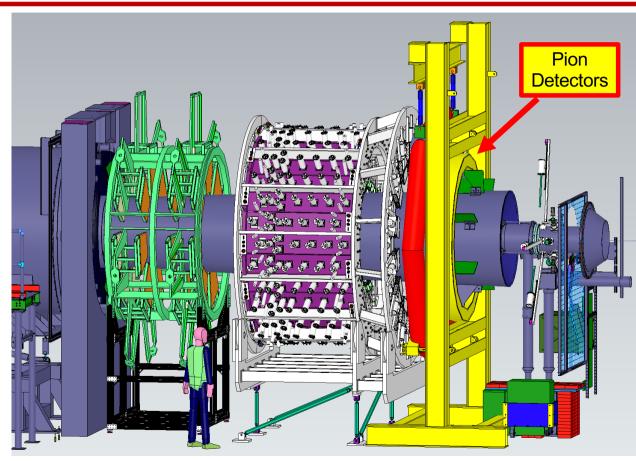
David Armstrong Tracking System Technical Lead William & Mary

Outline

- Subsystem overview
- Beam test at Mainz
- Mechanical Design
- π /e ID with Machine Learning

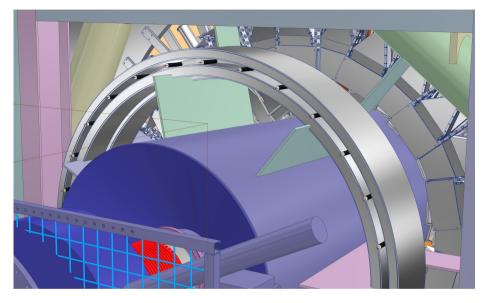
- Team Members:
 - David Armstrong (W&M)
 - Wouter Deconinck (U. Manitoba)
 - Neven Simicevic (Louisiana Tech)

PhD Students:


- Kate Evans (W&M)
- Elham Gorgannejad (U. Manitoba)

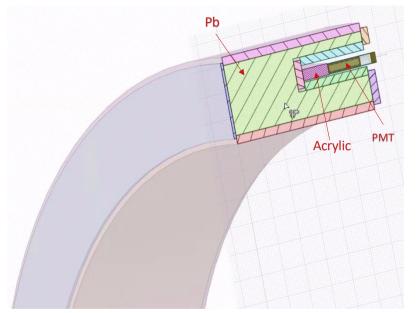
Undergrads:

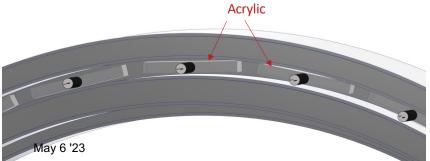
- Gherson Gonzales (W&M)
- Tristan Hurst (W&M)
- Raj Seehra (U. Manitoba)


Subsystem Overview – Pion Detectors

- Modular system of acrylic Cherenkov detectors covering full azimuth
- Samples Ring 5 & Shower-max acceptance
- Downstream of Main Detectors, Shower-max Detectors
- 20 cm thick Pb "donut" to range out Moller electrons.
- Asymmetry measurement in integrating-mode
- Pion flux determination in countingmode data-taking

Pion Detector

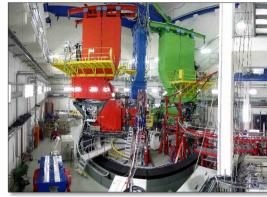

Issue: suppression of Moller electron signal wide-angle scattered shower remnants from Moller electrons in Shower-max and other upstream materials; low-energy gammas Compton scattering in acrylic, generating small (< 3 few pe's) signals.


Solution: Encase in extended Pb donut

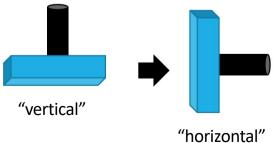
- 28 identical rectangular acrylic detectors:
 7 cm deep, 23 cm wide, 1" thick
- Read out via directly-coupled 1" PMT at rear (no lightguide)
- Optimized optical design:
 - maximize π/e ratio using pion directionality, and radial extent of acrylic detector
 - minimize weight/cost of Pb donut

Pion Detector

- 45 X₀ in direction of scattered Moller electrons (9.5 X₀ from Shower-max, 35.5 X₀ from Pb donut)
- π/e ratio of photoelectrons in pion detector: design goal: > 50% achieved: 75%
 - Total integrated dose: 200 kRad. UVT acrylic optical properties good to >1 MRad.
- Eliminates need for separate pion detector support structure
- Loose tolerance (\pm 5 mm) on location of acrylic
- Want: σ /peak < 25 %, so detector response doesn't broaden asymmetry width

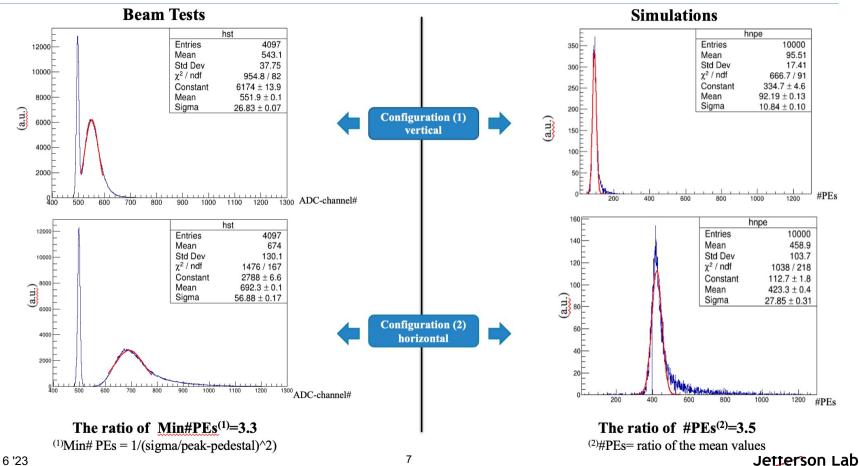


Pion detector tests at Mainz MAMI-B microtron Nov. 23 - 26 2022

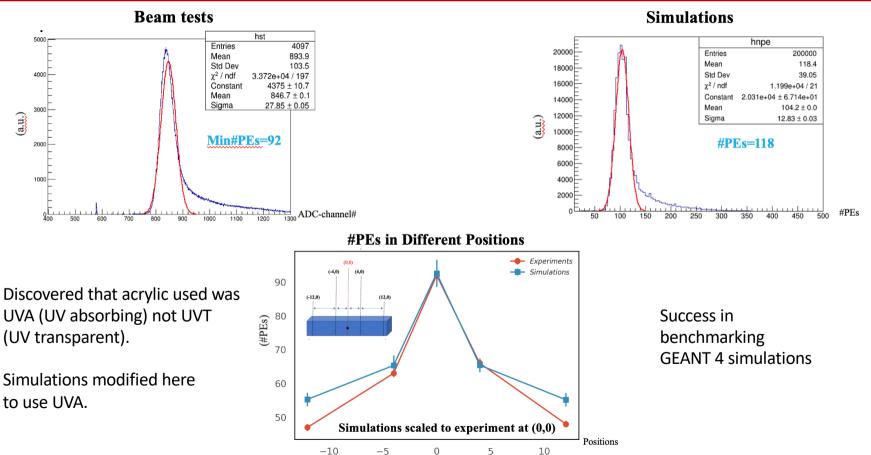

- QDC readout (CAEN V965)
- 2 Acrylic detectors studied: Det. A: 3.8 cm × 10.2 cm × 30 cm with 1.5" PMT
 Det. B: 3.8 cm × 10.2 cm × 20 cm with 1.5" PMT
 c.f. Design Pion detector: 2.5 cm × 7.0 cm × 23 cm with 1.0" PMT

885 MeV Electron Beam

https://en.wikipedia.org/wiki/Mainz Microtron



GEANT 4 scaling of photoelectron signal: Design/Det. B = 0.65

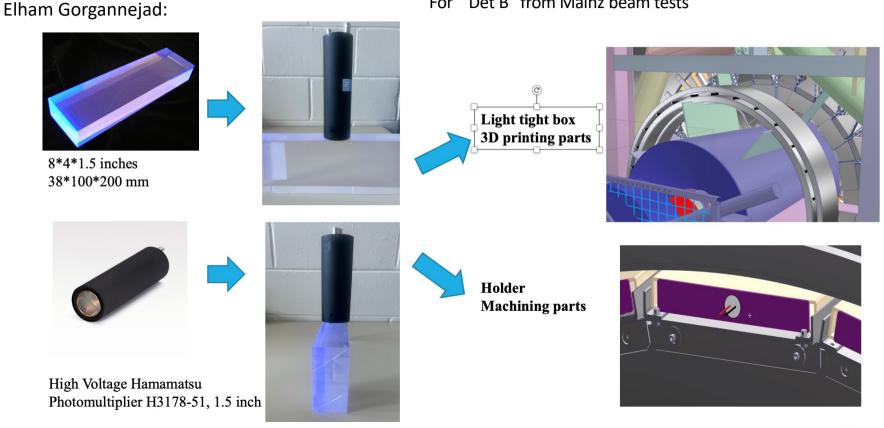


Pion detector tests at Mainz - spectra

Pion detector tests at Mainz

8

Jefferson Lab


Factors that might affect the results	Experiment
Spectral Range: UVA-Lucite	400-700 nm
Spectral Range: UVT-Lucite	300-700 nm
Quantum Efficiency: Default PMT	22% @ 290nm
Spectral Range: Default PMT	200-800 nm
Quantum Efficiency: Borosilicate PMT	27% @ 390nm
Spectral Range: Borosilicate PMT	300-650 nm

Full simulations (Pi/e) vs standalone simulations(#PEs)	Pi/e * Full Simulation	#Pes Standalone Simulation
Default QE, UVT- Lucite	70.97%	89
Default QE, UVA- Lucite	63.64%	55
Borosilicate QE, UVT- Lucite	75.34%	111
Borosilicate QE, UVA- Lucite	60.00%	65

These results use desired pion detector geometry, with 1" PMTs

Mechanical Design - prototyping

For "Det B" from Mainz beam tests

Jefferson Lab

Mechanical Design - prototyping

Elham Gorgannejad: Light tight box **3D** printing parts Holder **Machining parts**

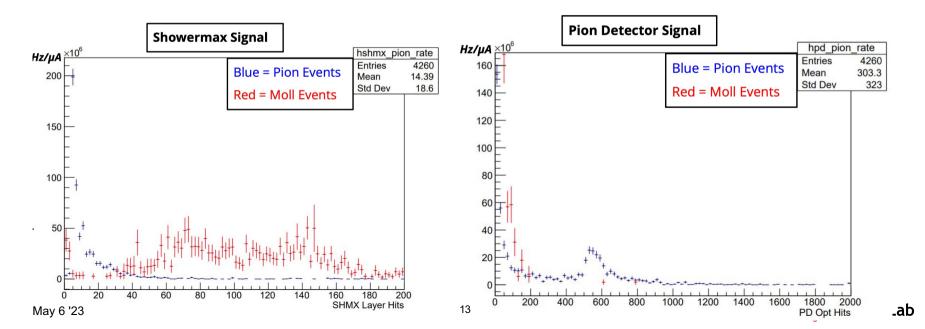
For "Det B" from Mainz beam tests

Jefferson Lab

Mechanical Design – mounting concept

Larry Bartoszek concept:

To Do:


tweak acrylic size, minimize wall thickness for box to ensure fit in the pion donut enclosure

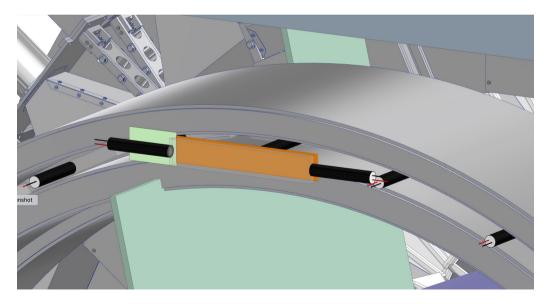
Pion Flux measurement

$$A_{PV}^{SHMX} = A_{PV}^{Mol} f_{Mol}^{SHMX} + A_{PV}^{\pi} f_{\pi}^{SHMX}$$
 (similar for Ring 5

$$A_{PV}^{PD} = A_{PV}^{Mol} f_{Mol}^{PD} + A_{PV}^{\pi} f_{\pi}^{PD}$$

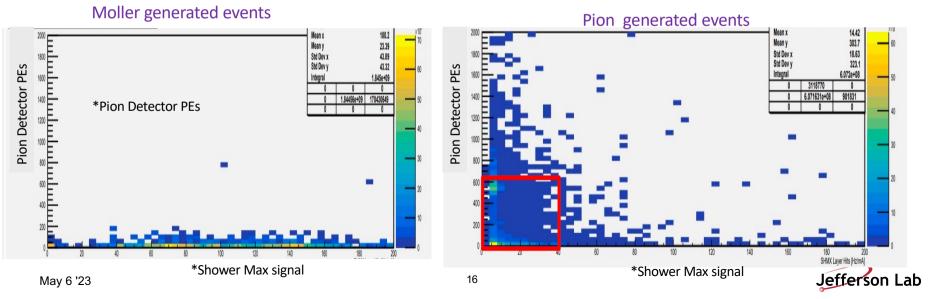
Pion Flux measurement – Blocker enhancement

- Additional mode to verify response of Pion Detector and Shower-max to pions:
 - insert Blocker collimator (20 X₀ W/Cu)
 - Suppress π^- flux at main detectors by $\times 0.55$
 - Suppress e^- flux at main detectors by $\times 10^{-4}$
- Shower-max signal: roughly equal mix of π^-/μ^- and e^-
- Pion Detector: essentially pure π^-/μ^-


To do: detailed GEANT 4 simulations

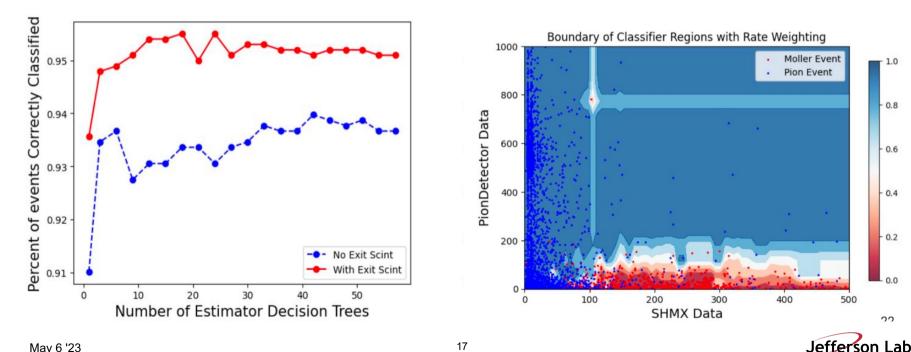
Pion Exit Scintillator?

- In Counting Mode, could we improve f^{π} determination by adding a Pion Exit Scintillator?
- Investigated in GEANT 4 simulation by Tristan Hurst.
 - Conclusion: Only marginal (few %) improvement in pi/e discrimination in counting mode, but at significant cost in pion detection efficiency. We have decided not to pursue this.



$$A_{PV}^{SHMX} = A_{PV}^{Mol} f_{Mol}^{SHMX} + A_{PV}^{\pi} f_{\pi}^{SHMX}$$
$$A_{PV}^{PD} = A_{PV}^{Mol} f_{Mol}^{PD} + A_{PV}^{\pi} f_{\pi}^{PD}$$

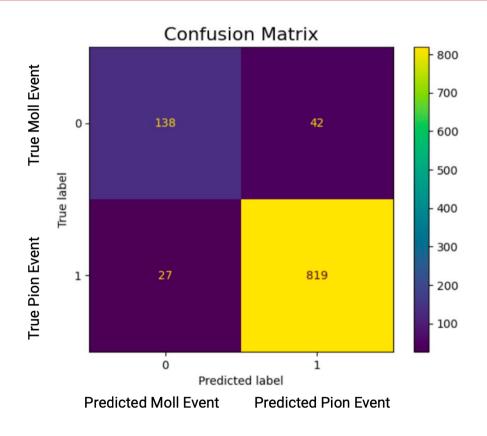
[similar for Ring 5]


*Shower Max signal here is a proxy for optical photons: number of charged particle hits on quartz layers

Pion Flux measurement – Machine Learning

Tristan Hurst: Random Forest Decision Tree classifier

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html



Performance = 95.1% Correctly Classified events

Pion Flux measurement – Machine Learning

Next steps for f^{π}

- Break up simulated data between open/closed/transition detectors
- add Ring 5 data
- add GEM track information
- decide on best metric for success

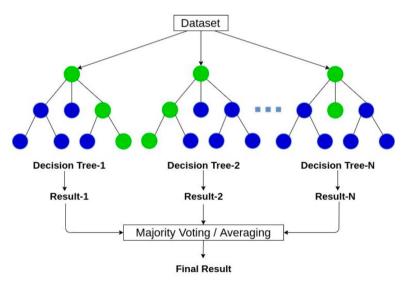
Pion Detector

Next steps:

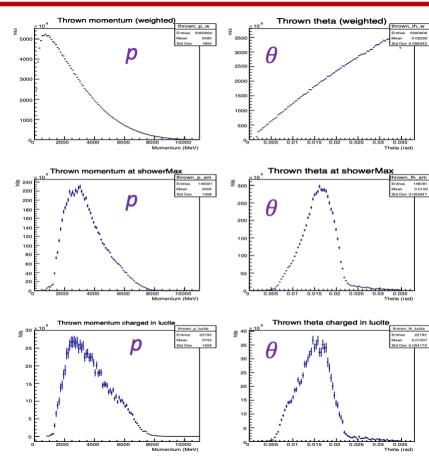
- PMT model selection
- Mechanical design finalize
- 2nd prototype with final design

LLER

Thank You! Questions?



Classifier Used : Random Forest Classifier


- Creates multiple decision trees using the input data
- Determines certain cuts which groups data into different branches
- When used for a classification, every tree gives an independent results, then, to determine the result of the Random Forest Classifier, the average of all the trees' decisions is the output
- Classifier returns a **probability** of the input being one type or another

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 19

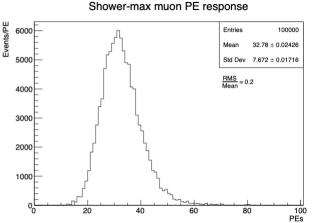
Pion Detector: Fair sampling of kinematics

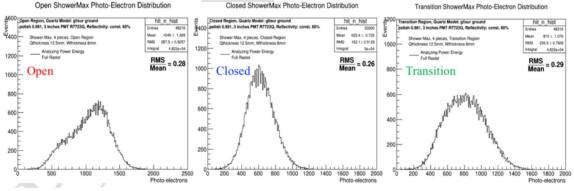
Thrown Kinematics (Wiser model)

Kinematics seen by Ring 5 & ShowerMax

Kinematics seen by Pion Detectors

Pion Detector: readout and PMT selection


- Integrating mode readout will be the same as for Main detectors and Showermax.
- Counting mode readout will use switchable-gain bases, similar to MD & Showermax (details await choice of PMT).
- 1" PMTs
- Expected cathode current in integrating mode : 4 MHz per detector (including pi's and e's), folded with photoelectron response: 42 pA
- Dynamic range of the ADC: 2 V_{pp}
- Assume anode current of 500 nA to give 500 mV signal level
 - Gain at the I-to-V preamplifier: 1 MOhm
 - PMT gain: 500 nA/42 pA = 1.2×10^4 (modest gain)
- Match optical cut-off of PMT window below cut-off of UVT acrylic (300 nm)
 ∴ don't need fused silica window, Schott glass adequate (cut off ≈250 nm)



Pion Flux measurement

- Determine f^{π} in thin quartz detectors in Counting Mode:
 - Trigger on pion detector signal.
 - see MIP in Shower-max:

Muon
33
34
33

Software requirement: (Tracking GEMs)·(Tracking Scints)·(thin quartz)·(ShowerMax MIP)·(Pion Detector)

