Detector Tiling and Tile Asymmetry Deconvolution Analysis

MOLLER Collaboration Meeting 2023

May 05, 2023

Ciprian Gal, Zuhal Seyma Demiroglu

Measurement Of a Lepton Lepton Electroweak Reaction

Main Detector Array

- The main detector is separated into 28 azimuthal segments and 6 radial regions.
 - There are 8 detector modules in each segment.
 - The tiles are covering the entire azimuth and radial region.

Front-flush and back-flush segment plates

MOLLER Collaboration Meeting 2023

Arrangement of the detector modules in the front-flush segment plate.

Front view (looking downstream) of the main detector array.

More detailed talks regarding the design of MD will be given at the Integrating Detector Session on May 6th.

Detector Tiling and Tiles in the GEANT4 Simulation

- The main aim is to improve the ability to separate the Møller signal from the e-p elastic and e-p inelastic background.
- The radial dimensions of each quartz tile are set to maximize the Møller signal and get the best precision extraction of the Møller asymmetry in Ring5.

• Michael Gericke has implemented the active volume of the detector modules (224 quartz tiles) into GEANT4 simulation.

Tiles in the GEANT4 simulation

- Placing a virtual detector plane in the upstream end of the quartz tiles.
 - z-position of the virtual detector plane:
 21309.65mm.

Looking upstream

Analysis Procedure

- Run the GEANT4 simulation with the Moller, ep-Elastic, and ep-Inelastic physics generators for 3M events.
- We looked only at primary particles from the target to understand/test the quartz tile geometry (overlap regions).
 - Selected the electron hits with kinE > 1 MeV in virtual detector plane (d132) and then look if those hits will also detect in the quartz tiles.

d132			@21309.65mm	
Ring		Rmin [mm]	Rmax [mm]	L [mm]
	1	613.82	643.82	30.00
	2	643.82	703.82	60.00
	3	703.82	763.82	60.00
	4	763.82	883.82	120.00
	5	883.82	1023.82	140.00
	6	1023.82	1123.82	100.00

Radial Distributions at the Detector plane #132

• Simulated signal and background rate as a function of radial location of detected primary electron at the virtual detector plane.

Hit Position Distributions (Moller + ep Elastic Gen)

MELLER

Hit Position Distributions (Moller + ep Elastic Gen)

Missed Hits

Overlapped Hits

Radial Distributions (Moller + ep Elastic Gen)

Radial Distributions (Moller + ep Elastic Gen)

Summary Tables for the Missed/Overlapped Hits

	Integral values from rate-weighted 2d hit position distributions								
	d132	d132+tile	(d132+tile)*NumberOfTiles	Missed Hits	Overlapped Hits				
Ring1	8.40E+07	1.26E+07	1.28E+07	7.13E+07	1.35E+05				
Ring2	1.19E+10	1.11E+10	1.36E+10	8.96E+08	2.52E+09				
Ring3	1.96E+10	1.74E+10	2.23E+10	2.24E+09	4.87E+09				
Ring4	1.68E+10	1.63E+10	1.96E+10	5.14E+08	3.35E+09				
Ring5	1.29E+11	1.29E+11	1.43E+11	1.50E+08	1.38E+10				
Ring6	2.87E+10	2.61E+10	3.08E+10	2.60E+09	4.77E+09				
allRings	2.06E+11	2.00E+11	2.29E+11	6.47E+09	2.93E+10				
				Missed Hits/d132=3%	Overlapped Hits/(d132+tile) = 15%				

• Most of the missed hits that are on Ring 3 and Ring 6.

	% Contribution to the total					
	Missed Hits	Overlapped Hits				
Ring1	1%	0%				
Ring2	14%	9%				
Ring3	35%	17%				
Ring4	8%	11%				
Ring5	2%	47%				
Ring6	40%	16%				

Tile Asymmetry Deconvolution Analysis

- The deconvolution analysis is used to extract the asymmetries in the signal and background processes from the data.
- In $i_{th}(r,\phi)$ bin, measured asymmetry;

 $A_{m}^{i} = f_{ee}^{i} A_{ee}^{i} + f_{ep-elastic}^{i} A_{ep-elastic}^{i} + f_{ep-inelastic}^{i} A_{ep-inelastic}^{i} + f_{eAl-elastic}^{i} A_{eAl-inelastic}^{i} + f_{eAl-inelastic}^{i} A_{eAl-inelastic}^{i} + f_{eAl-inelastic}^{i} A_{eAl-inelastic}^{i} + f_{eAl-inelastic}^{i} A_{eAl-inelastic}^{i} + f_{eAl-inelastic}^{i} + f_{eAl-inelast$

• The dilution for a given process:

 $-f_k = N_k / \sum_j N_j$, N_k : The rate of detected events from process k.

- Run the physics generators (Moller, epelastic, epinelastic, pion, elasticAl, inelasticAl, quasielasticAl) with 1M events.
- The deconvolution analysis is based on the 5 process fit.
 - Moller, ep-elastic, ep-inelastic (separated into three bins in W: 1 < W < 1.4 GeV, 1.4 < W < 2.5 GeV, 2.5 < W < 6 GeV).

Total Rate in the Tiles

10¹⁵

10¹⁴

10¹⁰

10¹²

10¹

10¹⁰

10⁹

10⁸

10⁷

10⁶

10⁵

10⁴

10³

10²

10

Moller (d132)

Total rate of the primary electrons in all the Rings and ϕ -sectors for Moller, ep Elastic and ep Inelastic event physics generators.

Sums (rate*Asym) for all rings and sectors for primary e E>1 MeV

R1 R1 R1 R2 R2 R3 R3 R3 R3 R4 R4 R4 R5 R5 R5 R6 R6 R6 R6 R6 R7 R7

Sums (rate*Asym) for all rings and sectors for primary e E>1 MeV

Asymmetry*rate-weighted of the primary electrons in all the Rings and ϕ -sectors for Moller, ep Elastic and ep Inelastic event physics generators.

> with simulated 1M events Jefferson Lab

ep Elastic (Quartz Tiles)

Ratio of Total Rate in the Tiles to det132

Total rate of the primary electrons in all the Rings and ϕ -sectors for Moller, ep Elastic and ep Inelastic event physics generators.

Asymmetry*rate-weighted of the primary electrons in all the Rings and ϕ -sectors for Moller, ep Elastic and ep Inelastic event

physics generators.

Jefferson Lab

MOLLER Collaboration Meeting 2023

Toy Dataset Simultaneous Fit Results

det132 @21.3m

Quartz Tiles

Processes	Expected A (ppb)	σ_A (ppb)	$rac{\sigma_A}{ A }$ (%)	Processes	Expecte (ppb)	d A
Møller	-34.78	0.72	2.08	Møller	-34.59	
ep-elastic	-27.98	1.19	4.24	ep-elastic	-27.42	
ep-inelastic (W1)	-549.32	40.05	7.29	ep-inelastic (W1)	-543.5	
ep-inelastic (W2)	-621.88	29.81	4.79	ep-inelastic (W2)	-573.47	
ep-inelastic (W3)	-450.68	61.87	13.73	ep-inelastic (W3)	-446.21	

Results of the simultaneous fit to the 18 quartz tile asymmetries.

The asymmetries in Ring5 and their fitting errors in ppb and in % are shown.

Summary

- Implemented the quartz tile geometry into the remoll simulation.
- Performed the deconvolution study by using the quartz tiles.
 - The tile implementation results look very encouraging.
 - The trade-off between overlap and missing hits doesn't seem to produce a major impact on the deconvolution.

Backup

The Size of the Quartz Tiles

Quartz Ti	les (FF)			Quartz Tiles	(BF)		
Ring	Rmin [mm]	Rmax [mm]	L [mm]	Ring	Rmin [mm]	Rmax [mm]	L [mm]
R1FF	716.72	746.72	30	R1BF	723.69	753.69	30
R2FF	732.49	792.49	60	R2BF	739.45	799.45	60
R3FF	778.24	838.24	60	R3BF	785.1	845.1	60
R4FF	823.6	943.6	120	R4BF	830.48	950.48	120
R5FF	929.43	1069.43	140	R5FF	926.22	1066.22	140
R5BF	934.17	1074.17	140	R5BF	937.35	1077.35	140
R6FF	1051.41	1151.41	100	R6BF	1058.37	1158.37	100

	x [mm]	y[mm]	z[mm]
Ring1	169	30	20
Ring2	179	60	20
Ring3	190	60	20
Ring4	213	120	20
Ring5	80	140	17
Ring6	260	100	20
Ring3 Ring4 Ring5 Ring6	190 213 80 260	60 120 140 100	

Ring6 Tiles

Main Integrating Detector Segmentation

Thin Quartz (224) 6-ring Cherenkov detector

• Integrating detectors are an array of detectors based on quartz as the active element.

- The thin detector array consist of 6 rings and 224 detectors.
 - 84 detectors in Ring 5 and 28 in each of the other rings

MOLLER Collaboration Meeting 2023

26

Simulated Møller and ep e- rates for superimposed azimuthal and radial bins in one toroidal sector. GHz/µA/0.5cm² ື y(cm) 40 30 F 20 F 10 F -10F -20 F -30 -100 -120 -110 -90 -80 -70 (cm) Particle Type 0.018 elastic 0.016 inelastic Ring 5 0.014 N 7 Ring 3 Ring 4 Ring 6 0.012 0.008 0.006 0.004 0.002 1000 700 800 900 1100 600 1200 1300 erson Lab