Ferrous Materials

MOLLER Collaboration Meeting – May 2023

ericking@temple.edu

Ferrous Materials – Rescattering in polarized materials

$$A_{\text{false}} = f_r P_e P_f A_n$$

P_f: Polarization of ferrous material A_n: Average analyzing power of polz'd scattering processes P_e: Polarization of the electron f_r: fraction of detector moller signal

Note: A_{false} is Moller rate but backgrounds come from all processes so there's another factor of $\sim 10^{-4}$ pops in to adjust for Moller rate.

Design Parameter for MOLLER: $\Delta A_{\rm raw}[{\rm ppb}] \approx 0.54$

We'd like two orders of magnitude cushion on a false asymmetry.

$$A_{\text{false}} \sim 0.1 [\text{ppb}](10^{-2})(10^{-4}) \sim 10^{-16}$$

We do make some safe conservative approximations:

What we're left with is:

	Material	X_r	Spin Polarization P_f	Fraction per e.o.t.	Fraction per Moller
	Carbon Steel	2000	1E-02	1E-11	1E-07
	Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
	Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
	Aluminum	0.0001	1E-09	1E-04	1E+00
'ungsten, too —	→ Inconel 625	0.001	1E-08	1E-05	1E-01
	Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

- These are the limits that we've set for normalized ferrous materials scattering backgrounds.
- I'm going to try to persuade you into agreeing these are very reasonable upper limits.

These are the quantities of interest as upper-bounds for ferrous materials scattering in our studies.

Materials: Stainless Study done for CERN at Los Alamos in the 1990s

MAGNETIC PERMEABILITY OF STAINLESS STEEL FOR USE IN ACCELERATOR BEAM TRANSPORT SYSTEMS*

Table 1 - Magnetic Permeability - J1

Material	As Received	After Anneal [1]	After Electropolish	Weld Rod	After TIG Welding	Post-Weld Anneal 121
304L	1.05-1.1	1.02-1.05	<1.01	E/ER 309	2.2-2.5	1.4+
316[3]	< 1.01	< 1.01	<1.01	E/ER 316	1.6	1.10-
				E/ER 316L	16	1 02-1.05
				E/ER 316L [4]	1.4 [4]	1.02-1.05
				E/ER 310	1.02-1.05	< 1.01
20Cb3	1.01-1.02	1.02-1.05	<1.01	E/ER20Cb3	<1.01	<1.01
310	< 1.01	<1.01	<1.01	E/ER 310	<1.01	<1.01
Nitronic 33	<1.01	1.02-1.05	<1.01	NIT33	1.1	<1.01
Nitronic 40	<1.01	<1.01	<1.01	NIT40	1.1-1.15	1.02 +
317LN	< 1.01	<1.01	<1.01	E/ER 317	1.2-1.4	<1.01

IV. CONCLUSIONS

The use of 310 with 310 weld rod or 20Cb-3 with 20Cb-3 weld rod appears to produce welds with the required permeability of not greater than 1.02, without the necessity of high-temperature solution annealing of large welded components. The availability of two metal/weld rod combinations allows the fabrication process and material to be selected on basis of cost of fabrication and availability of materials.

1. Anneal conditions: 1800° for 75 min on 20Cb-3, 1980° for 40 min on all other types.

 Post-weld anneal conditions: 1825° for 60 min in nitrogen at a pressure of approximately 4x10-5 torr on all samples.

3. The same 316L coupons were welded with four different weld rods.

4. Arc welded with coated rod.

Materials: Brass	/Bror	nze			Room Ter	mp
Worst case brass/bronze susceptibility is ~10-3	N	lagnetic Susceptibility	8.94 8.92 8.89 8.97	-9.37E-6 3.22E-5 -4.44E-6 7.47E-5	-2.98E-6 2.53E-5 4.96E-4 6.74E-5	D P D~P P
Note: Ignoring 'free cutting brass'	C17200 C18200 C18700M -C18900 C22000H	BERYLCO 25 CHROME COPPER DEOXIDIZED C18700 HIGH COPPER ALLOY COMMERCIAL BRONZE	8.33 8.94 8.95 8.89 8.89	1.56E-3 -3.60E-6 2.76E-4 2.36E-4 -5.69E-6	1.82E-3 7.51E-5 -4.01E-3 2.59E-3 7.63E-6	P D-P P-D P D-P
<u></u>	C22600 C230001 C260002 C31600 C34000 C35300	JEWELRY BRONZE 87.5 RED BRASS 85 CARTRIDGE BRASS 70 LEADED BRONZE W NI MEDIUM LEADED BRASS 64 HIGH LEADED BRASS 62	8.83 8.76 8.52 8.86 8.48 8.50	-3.19E-6 -5.85E-6 -3.48E-6 -7.86E-6 9.42E-5 3.36E-3	1.26E-5 3.38E-5 -6.14E-5 -1.26E-2 -8.36E-3 -2.37E-2	D-P D-P D P-D P-D
Measured X _r s:	C36000 C44300 C46400	ADMIRALTY BRASS AS	8.52 8.55 8.43	1.12E 2 -1.27E-5 6.64E-4	-2.62E-5 7.85E-3	D P
Silicon Brass: (consistent) <10 ⁻³ Brass 485: (consistent) <10 ⁻³	C46400H C48200 C48500 C50700	NAVAL BRASS NAVAL BRASS MED LEAD NAVAL BRASS HIGH LEAD PHOSPHOR BRONZE 1.25	8.40 8.44 8.50 8.95	5.54E-4 5.63E-5 5.80E-4 -5.98E-6	1.17E-3 -1.81E-3 -2.21E-2 -3.98E-6	P-D P-D D
Brass 360: Inconsistent upperbound as much as 2(10 ⁻²)	C51000 C61000 C64700 C65100 C655001 C65600	PHOSPHOR BRONZE 5 A ALUMINUM BRONZE SILICON BRONZE LOW SILICON BRONZE B HIGH SILICON BRONZE A SILICON BRONZE	8.95 7.88 8.91 8.75 8.56 8.54	-5.86E-6 -9.02E-6 4.04E-6 2.85E-5 2.30E-4 2.84E-4	-5.56E-6 -1.12E-5 7.95E-5 2.09E-3 8.02E-3 8.67E-3	D D P P P
	C66100 C77300	SILICON BRONZE NICKEL SILVER	8.55	1.30E-4 4.96E-6	4.48E-3 1.42E-4	P

l've placed these slides towards the beginning just in case we are really crunched for time.

Main Points

General Points

- Stainless steel components are okay so long as they're not in a high field and there's no straight LoS to the detectors.
- Inside the spectrometer we're going to need to use the ferromaster to check SS and brass components.
- We've made conservative estimates to set our tolerable ferrous background limits.

l've placed these slides towards the beginning just in case we are really crunched for time.

Main Points

On the limits

- We've made conservative estimates to set our tolerable ferrous background limits.
- Additionally,
 - We don't calculate the effects of depolarization (Maximon & Olsen paper) in our analysis.
 - 2. Field weighting doesn't take into field directions.
 - 3. We also don't account for spin precession of e- while in the fields.

Collectively (as these should all work in our favor were we to calculate them), this all suggests that what I referred to as 'Tolerable Limits' are prudently set and safe upper bounds.

Process: Simulation

(1) Run simulations of **beam on target**

- (a) Volumes of interest are first placed in parallel world as SD volumes.
- (b) Typically run 10B events
 - (i) Under 1 MeV? StopAndKill
 - (ii) No hits? Don't record event in ROOT file.
- (2) Skim electrons-beam electron or daughter of beam electron- that pass through ferrous volumes being studied.
 - (a) Only count any given electron once on initial entry into a ferrous volume.
 - (b) Skimmed events are stored in ROOT file to be used in secondary simulation.

- (3) Secondary simulations run with input from skimmed ROOT file.
 - (a) Sensitive detector volumes for the main detector and cylindrical volume encasing the PMT region (SD for this region overestimates hits).
 - (b) Number of events can vary. I default to ~100K. Although, I try to make sure that sample the primary simulation hits a sufficient number of times in the secondary simulations so it can be 500K or 1M events.
- (4) Analyze!

Analysis

If secondary simulation event results in a hit(s):

- Check to see if vertex originated in magnetic field if so then assign weight equal to field strength in gauss (Default weighting for events is 1 assuming ~1 gauss ambient field)
- (2) Take results and normalize against total generated vertex weight.
- (3) Hits < 1 MeV are not counted.
- (4) Output select histograms and csv file.

Calculating total beam on target event fraction:

⇒ Multiply secondary simulation fractional hit rate by primary simulation fractional hit rate to get total 'simulated' fractional hit rate.

If secondary sim

- Check to see if so then ass gauss (Defau gauss ambie
- (2) Take results c vertex weigh
- (3) Hits < 1 MeV
- (4) Output selec

Calculating tota

⇒ Multiply second primary simulation 'simulated' fractional

*This works in our favor with an overestimate of the ferrous scattering background.

Detector '28' | Charge Secondary Sim Hits Energy Distribution

FIG. 5. Circular polarization of bremsstrahlung beam from longitudinally polarized electrons,

 $P_{\rm II}\!=\!P({\bf p}_{\rm I},\!\zeta_{\rm I~long},\!{\bf e}_{\rm circ}),$ and depolarization of longitudinally polarized electrons,

 $D_{11} = D(\mathbf{p}_1, \boldsymbol{\zeta}_1 \mathbf{long})$

and of transversely polarized electrons, $D_L = D(\mathbf{p}_1, \zeta_1 \text{ trans})$. Coulomb and screening effects are included. The curves for P_{11} and D_1 are valid for all elements and for any incident electron energy above ≈ 20 Mev. D_{11} depends slightly on the electron energy; curves are shown for incident electron energies 20 Mev and 10 Bev.

Photon and Electron Polarization in High-Energy Bremsstrahlung and Pair Production with Screening*

HAAKON OLSEN, Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway

AND

L. C. MAXIMON,[†] Fysisk Institutt, Norges Tekniske Høgskole, Trondheim, Norway and Department of Theoretical Physics, The University, Manchester, England (Received November 24, 1958)

List of Recent Investigations

- Fasteners in toroid region
- Collimators 1 & 2
- Drift pipe vacuum pipe
- Detector Supports
- Concrete Scraping
- Pion-donut tie rods
- Jib crane
- Power leads
- GEM supports
- Collar 2 barite wall
- Bellows (done by Ryan)

Components which aren't a concern

- Fasteners in toroid region
- Collimators 1 & 2←Not a concern
- Drift pipe vacuum pipe ← Not a concern
- Detector Supports ← Not a concern
- Concrete Scraping←**Not a concern**
- Pion-donut tie-rod ends ← Not a concern

● Jib crane ← Not a concern

- Power leads ← Not a concern
- GEM supports ← Not a concern
- Collar 2 barite wall
- Bellows (done by Ryan)

•				
Material	X_r	Spin Polarization P_f	Fraction per e.o.t.	Fraction per Moller
Carbon Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

(For example) Jib Crane SensDet 9209

	Primary Count	S	
Det/mTrid	0	1	TOT
9209	1434	3795	5229

Primary Fractional					
Det/mTrid	0	1	TOT		
9209	1.5E-07	3.9E-07	5.3E-07		

IE	Se	condary (Bear	n Only)	
	Total Events	500000	Sec Fractional	Total Fractional
	[9928] Charges > 1MeV	38	7.6E-05	2.9E-11
I٢	[9928] Gammas > 1MeV	92	1.8E-04	7.1E-11
IF	[9911] Charges > 1MeV	337	6.7E-04	2.6E-10
I	[9911] Gammas > 1MeV	491	9.8E-04	3.8E-10

Seconda	ary (Beam and	daughter e-)	
Total Events	500000	Sec Fractional	Total Fractional
[9928] Charges > 1MeV	54	1.1E-04	5.7E-11
[9928] Gammas > 1MeV	27	5.4E-05	2.9E-11
[9911] Charges > 1MeV	366	7.3E-04	3.9E-10
[9911] Gammas > 1MeV	137	2.7E-04	1.5E-10

Components which require care

- Fasteners in toroid region
- Collar 2 barite wall
- Bellows (done by Ryan)
- HRS steel floor tracks

Fasteners:

- Proper material selection is important.
- Ferrous simulations highlight the importance of measuring each of these components with a ferromaster to ensure quality.
- Fasteners in TM4-region account for most of the backgrounds.

Components which require care

- Fasteners in toroid region
- Collar 2 barite wall -
- Bellows (done by Ryan)
- HRS steel floor tracks
- First-round ferrous simulations used simpler 'older' barite wall support idea.
- Simulations with more accurate design underway (I'm building the GDML).
 - Top portion will be shielded but there will be more 'leg mass' (so outcome uncertain)
- Takeaway: Care in material and perhaps design is likely key here.

Material	X_r	Spin Polarization P_f	Fraction per e.o.t.	Fraction per Moller
Carbon Steel	2000	1E-02	1E-11	1E-07
Stainless Steel (Worst)	1	1E-05	1E-08	1E-04
Stainless Steel (Ideal)	0.01	1E-07	1E-06	1E-02
Aluminum	0.0001	1E-09	1E-04	1E+00
Inconel 625	0.001	1E-08	1E-05	1E-01
Brass/Bronze (Worst)	0.001	1E-08	1E-05	1E-01

Components which require care

- Fasteners in toroid region
- Collar 2 barite wall
- Bellows (done by Ryan)

Bellows:

- Ryan's recent simulations continue to support the need for high-quality materials for the bellows.
- Collar 1 design improvements (Ryan has already or will give this talk) should further tamp down ferrous backgrounds from the bellows.

- (1) We're happy to field questions about components.
 - No SBS over the late-spring and early-summer so I have some time.
- (2) I hope I've convinced or at least persuaded people into the idea that we've set prudent upper-bounds on ferrous scattering.
- (3) There is no #3. Just see #1 and #2 again.

Fastener Reference Slide

Backup Slide: Tabled Fastener Results

	IT	M1 Region Contributi	on	
Type:	Cha	rges	Gammas	
Det	Frac Total	Frac Wtd	Frac Total Fra	
9010	2.5%	7.5%	10.7%	23.4%
9020	0.1%	0.0%	0.9%	0.0%
9030	0.0%	0.0%	0.2%	0.0%
TM1 SUMS	2.7%	7.5%	11.9%	23.4%
	IT	M2 Region Contributi	on	
Type:	Cha	rges	Gammas	
Det	Frac Total	Frac Wtd	Frac Total	Frac Wto
9010	1.3%	1.8%	5.2%	6.2%
9020	2.3%	0.1%	5.8%	0.2%
9030	1.3%	0.0%	2.5%	0.1%
TM2 SUMS	4.9%	1.9%	13.5%	6.4%
	IT	A3 Region Contributi	on	
Type:	Cha	rges	Gam	imas
Det	Frac Total	Frac Wtd	Frac Total	Frac Wto

Type:	Cha	rges	Gam	imas
Det	Frac Total	Frac Wtd	Frac Total	Frac Wtd
9010	0.7%	1.2%	2.7%	4.6%
9020	6.4%	1.1%	9.0%	1.4%
9030	4.4%	0.2%	5.0%	0.2%
TM3 SUMS	11.5%	2.6%	16.8%	6.2%

	IT	M4 Region Contributi	on	
Type:	Charges		Charges Gammas	
Det	Frac Total	Frac Wtd	Frac Total	Frac Wtd
9010	11.1%	50.9%	11.0%	41.6%
9020	55.0%	34.1%	37.2%	20.6%
9030	14.9%	3.1%	9.6%	1.7%
TM4 SUMS	80.9%	88.1%	57.9%	63.9%

Mean Magnetic Field at Detector Event 'Vertices' in Gauss					
Det/Type	TM1	TM2	TM3	TM4	ALL
9010/e	204.8	91.3	117.6	313.9	268.4
9020/e	1.7	2.6	12.1	42.5	37.9
9030/e	1.8	1.7	3	14.4	11.2
9010/g	172.1	93.3	134	297.6	201.4
9020/g	1.8	2.7	12.2	43.8	33.2
9030/g	1.7	1.7	2.9	13.9	8.9

Mean magnetic fields

Background contributions