# **R&D** activities at UMass

## Sayak Chatterjee

### **UMass, Amherst**

### **Group members**

Undergrad students: Grad students: Postdoc:

Luc Barret Steven Zhang Jonathon Mott Jhih-Ying Su Sakib Sarker Andrew Hurley Sayak Chatterjee

Supervisor

Prof. Krishna Kumar





## Outline

- R&D on the ring 6 quartz detector
  - Performance of the Ring 6 quartz detector at the MAINZ test beam (Nov 2022)
    - 10 mm R6 module (Heraeus) & 20 mm R6 module (Tosoh)
  - Performance of the Ring 6 quartz detector with the cosmic muons at UMass
    - 10 mm R6 module (Heraeus) & 20 mm R6 module (Tosoh)
  - Comparison of the detector performance with electron beam and cosmic test
  - Comparison of the data with simulation
  - R&D on the reflective light guide material
    - Miro-silver & Mylar
- Large cosmic stand at UMass (80/20 structure)
- R&D on single mask triple GEM chamber prototypes
- Summary & outlook

## Beam test at MAINZ (November 2022)



- Tested R6 QUARTZ detectors of 10 mm and 20 mm thicknesses with electron beam
- The 20 mm module used Tosoh QUARTZ (fused quartz tile)
- The 10 mm module used Heraeus QUARTZ
- Miro-silver is used as the lightguide reflecting material for both the modules

Image courtesy: Jonathan Mott

## Beam test at MAINZ (November 2022): Summary



| Module | Quartz<br>tile | HV PE<br>(V) yield |                                         | Sigma (PE)                             |
|--------|----------------|--------------------|-----------------------------------------|----------------------------------------|
| 10 mm  | Heraeus        | -1200              | 4.68<br>(Langau)<br>5.35<br>(Gaussian)  | 2.13<br>(Langau)<br>2.38<br>(Gaussian) |
| 20 mm  | Tosoh          | -1100              | 9.16<br>(Langau)<br>10.16<br>(Gaussian) | 3.02<br>(Langau)<br>3.47<br>(Gaussian) |

- We got 4-5 PE yield with the 10 mm module and 9-10 PE yield with the 20 mm module
- Probable reason for the low PE yield:
  - Miro-silver as the reflective light-guide material
  - Effect of Tosoh quartz (20 mm module)

Plot courtesy: Jonathan Mott

## **Cosmic test setup at UMass**



**Cosmic stand at UMass** 



Schematic of the electronic circuit diagram for the cosmic test



MOLLER Collaboration meeting, 05.06.2023

 Overlap window: 9 cm X 9 cm

 Delay: 60 ns

 HV for the Quartz detector: - 1200 V

 Gain of QDC: 200 fC/channel

 SC1: 9 cm x 9 cm x 1.5 cm

 SC2: 9 cm x 9 cm x 1.5 cm

 SC3: 30 cm x 30 cm x 2 cm

 QUARTZ: 9 cm x 29 cm x 2 (1) cm

 5

## **Cosmic test at UMass: Summary**



- We are getting ~10 20 % less PE yield from the modules with cosmic test as compared to the beam test
- We are getting ~ 10% broader spectra from cosmic test as compared to the beam data
- The broader spectrum with cosmic is due to the inclined tracks and that is also affecting the PE yields

MOLLER Collaboration meeting, 05.06.2023

## Simulation with Moller Optical framework



### Simulation agrees well with beam and cosmic data

- Simulation is performed using Moller Optical simulation framework
- 8 GeV electrons are fired at the center of the quartz
- Simulation is performed with different configuration of quartz tiles and light-guide materials
- Spectra are fitted with Langau distribution to get the PE yield and sigma

Plot courtesy: Jonathan Mott

## Investigation on the reflective light-guide materials

## Change of reflective material from Miro-silver to Mylar



## Comparison of QDC spectra with Miro-silver & Mylar with 10 mm QUARTZ



The PE yield has increased by a factor of ~ 3

MOLLER Collaboration meeting, 05.06.2023

## Comparison of QDC spectra with Miro-silver & Mylar with 20 mm QUARTZ



The PE yield has increased by a factor of ~ 2

MOLLER Collaboration meeting, 05.06.2023

## **Comparison of Miro-silver and Mylar**

### Measured data with cosmic muons

| Module | Quartz<br>tile | PE yield<br>(Miro-silver)              | PE yield<br>(Mylar)                      | Sigma (PE)<br>(Miro-silver)            | Sigma (PE)<br>(Mylar)                  |
|--------|----------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|
| 10 mm  | Heraeus        | 3.78<br>(Langau)<br>4.27<br>(Gaussian) | 11.58<br>(Langau)<br>13.14<br>(Gaussian) | 2.52<br>(Langau)<br>2.50<br>(Gaussian) | 3.56<br>(Langau)<br>4.44<br>(Gaussian) |
| 20 mm  | Tosoh          | 7.96<br>(Langau)<br>8.86<br>(Gaussian) | 15.96<br>(Langau)<br>18.52<br>(Gaussian) | 3.28<br>(Langau)<br>3.67<br>(Gaussian) | 3.56<br>(Langau)<br>5.17<br>(Gaussian) |

- Mylar gives better PE yields compared to the Miro-silver
- The resolution (PE yield/sigma) is better with Mylar



MOLLER Collaboration meeting, 05.06.2023

Plot courtesy: Dustin Mcnulty

## Comparison of simulation with cosmic and beam data

| Module | Quartz tile | Data type  | PE yield<br>(Miro-silver) | PE yield<br>(Mylar) | Sigma (PE)<br>(Miro-silver) | Sigma (PE)<br>(Mylar) |
|--------|-------------|------------|---------------------------|---------------------|-----------------------------|-----------------------|
| 10 mm  | Heraeus     | cosmic     | 3.78<br>(Langau)          | 11.58<br>(Langau)   | 2.52<br>(Langau)            | 3.56<br>(Langau)      |
| 10 mm  | Heraeus     | beam       | 4.68<br>(Langau)          | -                   | <b>2.13</b><br>(Langau)     | -                     |
| 10 mm  | Heraeus     | simulation | 4.03<br>(Langau)          | 11.4<br>(Langau)    | 1.76<br>(Langau)            | 3.17<br>(Langau)      |

| Module | Quartz tile | Data type  | PE yield<br>(Miro-silver) | PE yield<br>(Mylar) | Sigma (PE)<br>(Miro-silver) | Sigma (PE)<br>(Mylar) |
|--------|-------------|------------|---------------------------|---------------------|-----------------------------|-----------------------|
| 20 mm  | Tosoh       | cosmic     | 7.96<br>(Langau)          | 15.96<br>(Langau)   | 3.28<br>(Langau)            | 3.56<br>(Langau)      |
| 20 mm  | Tosoh       | beam       | 9.16<br>(Langau)          | -                   | 3.02<br>(Langau)            | -                     |
| 20 mm  | Tosoh       | simulation | 6.24<br>(Langau)          | 15.1<br>(Langau)    | 2.37<br>(Langau)            | 3.74<br>(Langau)      |

Good agreement between the simulated data, cosmic and beam data

MOLLER Collaboration meeting, 05.06.2023

Simulation is performed by Jonathon Mott

## Large cosmic stand at UMass

## **Design & plans**



- Two segments each having 8 quartz modules
- Testing of the performance of the modules with the cosmic muons at UMass and with electron beam at MAINZ
- Preparation is ongoing and the purchase of different components will begin soon
- Plan is to start with one segment (8 modules) and then proceed for the entire two segments
- Expecting to have the large cosmic stand running at UMass in this summer

### **R&D** with Gas Electron Multiplier chamber prototypes

## **GEMs at UMass**

- Four single mask triple GEM chamber prototypes: Three 10 cm X 20 cm and one 10 cm X 10 cm
- 10 cm X 20 cm GEMs have segmented foils
- All the GEM chambers have resistor chains to bias the individual GEM foils
- MPDs, back plans, APV cards, HDMI cables and LV modules are available to run three GEM chambers simultaneously
- Working on the MPD (+CODA) based DAQ system
- The GEMs will be used to track the cosmic muon trajectories and confine the solid angle of our cosmic muon stand



## Preliminary GEM characterization with Fe-55 source



Schematic of the electronic circuit diagram for the Fe-55 test

5.9 keV X-ray 'e- energy: ~3.0 keV X-ray

- Single mask triple GEM chamber of dimension 10 cm X 10 cm is operated with Ar/CO<sub>2</sub> gas mixture in a 70/30 volume ratio
- The chamber is irradiated using a Fe-55 X-ray source having characteristic energy of 5.9 keV
- ORTEC EASY-MCA is used to store the X-ray spectra
- The calibration of the MCA is done using external pulse
- Applied HV: -4000 V (724 μA) and distributed across the individual GEM foils using a resistive chain network

## **MCA** calibration and Fe-55 spectrum



**Characterization the GEM chambers using the Fe-55 source:** 

Measurement of gain, energy resolution, count rate and efficiency measurement with cosmic muons



#### Schematic of the MCA calibration circuit



**MOLLER Collaboration meeting, 05.06.2023** 

## Setting-up the MPD (+CODA) based DAQ for GEMs

- HDMI cables for backplane and lowvoltage (1.25V and 2.5V) power supply
- We have two MPDs, back planes and APV cards, HDMI cables, LV power supply - all parts for a VMEbackplane based readout system to run three GEMs simultaneously
- Trying to configure the MPD modules with the VME32 crate using CODA 2.6.2 (always getting errors for invalid data code!)



mpdInit: Looking for MPD with Address 0x280000
mpdInit: VME address = 0x280000: Invalid data code 0x47fffffff (expected 0x43524f4d)

## Summary & outlook

- Performance study of the Ring 6 quartz detector
  - Beam and cosmic test data agree well within ~ 10-20%
  - Two different reflective light guide materials (miro-silver & mylar) are tested with cosmic muons
  - Simulation matches well with the measured data
  - Performance study using UVS as the reflective light guide material
  - Characterizing the spectosil 2000 (expecting to have in couple of weeks)
- Preparation is going well to start operating the large cosmic stand at UMass in this summer
- R&D with the single mask triple GEM chamber prototypes
  - MCA based DAQ system is working for basic characterizations
  - The 10 cm X 10 cm chamber shows good Fe-55 spectrum
  - Basic characterization of all the chambers using Fe-55 source and MCA as the DAQ
  - Set up the MPD (+CODA) based DAQ for GEMs

## Thank you for your attention!!!

## Backup

PMT: ET tube (# 541)

DAQ: DRS4

PMT base: Standard base



## **Results (10 mm Heraeus QUARTZ module)**



#### The beam is hitting at the center of the QUARTZ tiles

**Resolution: Sigma/ PE yield** 

MOLLER Collaboration meeting, 05.06.2023

Plot courtesy: Jonathan Mott

## Results (20 mm Tosoh QUARTZ module)



The beam is hitting at the center of the QUARTZ tiles

**Resolution: Sigma/ PE yield** 

MOLLER Collaboration meeting, 05.06.2023

Plot courtesy: Jonathan Mott

## Results from the cosmic test (10 mm Heraeus QUARTZ module)



PE yield: (Mean x 200 x 10<sup>-15</sup>)/(12.3x10<sup>6</sup>x1.6x10<sup>-19</sup>)

Sigma (in terms of PE): (Sigma x 200 x 10<sup>-15</sup>)/(12.3x10<sup>6</sup>x1.6x10<sup>-19</sup>)

Gain of the PMT (ET#541 @ -1200 V): 12.3 x 10<sup>6</sup>

## Results from the cosmic test (20 mm Tosoh QUARTZ module)



PE yield: (Mean x 200 x 10<sup>-15</sup>)/(12.3x10<sup>6</sup>x1.6x10<sup>-19</sup>)

Sigma (in terms of PE): (Sigma x 200 x 10<sup>-15</sup>)/(12.3x10<sup>6</sup>x1.6x10<sup>-19</sup>)

Gain of the PMT (ET#541 @ -1200 V): 12.3 x 10<sup>6</sup>

## Comparison of QDC spectra with Miro-silver & Mylar with 10 mm QUARTZ



The PE yield has increased by a factor of ~ 3

## Comparison of QDC spectra with Miro-silver & Mylar with 20 mm QUARTZ



The PE yield has increased by a factor of ~ 2

## **Comparison of Miro-silver and Mylar**

| Reflective<br>material | Module | Quartz<br>tile | PE<br>yield                              | Sigma (PE)                             | Resolution (%)                         |
|------------------------|--------|----------------|------------------------------------------|----------------------------------------|----------------------------------------|
| Miro-silver            | 10 mm  | Heraeus        | 3.78<br>(Langau)<br>4.27<br>(Gaussian)   | 2.52<br>(Langau)<br>2.50<br>(Gaussian) | 66.7<br>(Langau)<br>58.5<br>(Gaussian) |
| Mylar                  | 10 mm  | Heraeus        | 11.58<br>(Langau)<br>13.14<br>(Gaussian) | 3.56<br>(Langau)<br>4.44<br>(Gaussian) | 30.7<br>(Langau)<br>33.8<br>(Gaussian) |
| Miro-silver            | 20 mm  | Tosoh          | 7.96<br>(Langau)<br>8.86<br>(Gaussian)   | 3.28<br>(Langau)<br>3.67<br>(Gaussian) | 41.2<br>(Langau)<br>41.4<br>(Gaussian) |
| Mylar                  | 20 mm  | Tosoh          | 15.96<br>(Langau)<br>18.52<br>(Gaussian) | 3.56<br>(Langau)<br>5.17<br>(Gaussian) | 22.3<br>(Langau)<br>27.9<br>(Gaussian) |

- Mylar gives better PE yields compared to the Miro-silver
- The resolution seems to be reasonable with Mylar

MOLLER Collaboration meeting, 05.06.2023

Reflectivity







Plot courtesy: Dustin Mcnulty

## Simulation with Moller Optical framework



- Simulation is performed using Moller Optical simulation framework
- 8 GeV electrons are fired at the center of the quartz
  - Simulation is performed with different configuration of quartz tiles and light-guide materials
  - Spectra are fitted with Langau distribution to get the PE yield and resolution

MOLLER Collaboration meeting, 05.06.2023