The MOLLER Experiment

Overview of the Physics Motivation

Krishna Kumar, MOLLER Collaboration Spokesperson UMass, Amherst

Tuesday, November 2, 2021

Outline

- ★ The MOLLER observable and New Interactions
- **Global Context for MOLLER**
 - **Comparison to Collider Discovery Reach** \star
 - Theoretical cleanliness and radiative corrections
 - **Techniques to Measure the The Weak Mixing Angle at Low Energy** \star
 - Lepton-Lepton Scattering at Existing, Planned or Potential Facilities \star
 - **Equipment Alternatives**

Physics Context for the Discovery Space of MOLLER

Unravelling "New Dynamics" in the **Early Universe:** how did nuclear matter form and evolve?

courtesy V. Cirigliano, H. Maruyama, M. Pospelov

 $M_{W,Z}$ (100 GeV)

∧ (~TeV)

Nuclear Physics Initiatives: "Low" Energy: $Q^2 \ll M_Z^2$

Leptonic and Semileptonic Weak Neutral Current Interactions

MOLLER Science Overview

Search for new flavor diagonal neutral currents Tiny yet measurable deviations from precisely calculable SM processes

Sensitivity of the Observable: PV Asymmetry in Møller Scattering

MOLLER Science Overview

Comparison with High Energy Colliders

Carefully chosen low energy experiments complement direct searches

Lacking any direct evidence for new particles besides the Higgs, both colliders and fixed target experiments search for new physics by looking for deviations from Standard Model predictions

LHC searching for leptonhadron interactions

MOLLER Science Overview

LEP200 searched for lepton- lepton interactions						
Collisions LEP200 Reach	$\Lambda^{\rm ee}_{\rm LL} \sim 8.3 ~{ m TeV}$					
1 Target E158 Reach	$\Lambda^{ m ee}_{ m LL} \sim 12~{ m TeV}$					
MOLLER Reach	$\Lambda_{\rm LL}^{\rm ee}\sim 27~{\rm TeV}$					
IR is accessing discovery space that be reached until the advent of a new						

cannot lepton collider or neutrino factory

Can MOLLER physics be done elsewhere in the world?

Search for New Interactions: carefully chosen low energy experiments complement direct searches

New purely leptonic interactions: MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider or neutrino factory

There are no concrete plans anywhere worldwide to build a next generation lepton collider or neutrino factory, both billion dollar class facilities that would take a decade or more to realize.

If the MOLLER measurement is not carried out, purely leptonic interactions will remain unexplored for at least another decade

- **Three other aspects:**

MOLLER Science Overview

LHC and future EIC sensitive to new lepton-hadron interactions

• Electroweak Physics • New "Low" Energy Physics • Capabilities of Existing Facilities

Theory Prediction and Radiative Corrections

The Standard Model Prediction: Remarkably Well-Known

 $A_{PV} = \frac{\rho G_F Q^2}{\sqrt{2}\pi\alpha} \frac{1-y}{1+y^4 + (1-y)^4} \{1 - 4\kappa(0)\sin^2\theta_W(m_Z)_{\overline{\text{MS}}}\}$ + $\frac{\alpha(m_Z)}{4\pi\hat{s}^2} - \frac{3\alpha(m_Z)}{32\pi\hat{s}^2\hat{c}^2}(1-4\hat{s}^2)[1+(1-4\hat{s}^2)^2]$ + $F_1(y,Q^2) + F_2(y,Q^2)$ $\left\{ \begin{array}{l} \kappa(0) \text{ known to 1\% of itself}_{0.245} \\ \text{ Erler and Ferro-Hernandez (2018)} \end{array} \right\}$ $\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} = \mathbf{1} - 4\sin^2\theta_{\mathbf{W}} \sim \mathbf{0.075} \Longrightarrow \mathbf{0.045}$ δ(Q^ew) $\frac{\delta(Q_W)}{Q_W} \sim 10\% \Longrightarrow \frac{\delta(\sin^2 \theta_W)}{\sin^2 \theta_W} \sim 0.5\%$ **≾ 0.4% 2** groups working on 2-loop Calculations Aleksejevs and Barkanova Series of publications (b) Du, Freitas, Patel and Ramsey-Musolf (e) Recent closed-fermion loops: arXiv:1912.08220

MOLLER Science Overview

Weak Mixing Angle Measurements at Low Energy

Atomic Parity Violation: Cs-133 future measurements and theory challenging Neutrino Deep Inelastic Scattering: NuTeV future measurements and theory challenging PV Møller Scattering: E158 at SLAC statistics limited, theory robust next generation: MOLLER (factor of 5 better) PV elastic e-p scattering: Qweak theory robust at low beam energy next generation: P2 (factor of 3 better) PV Deep Inelastic Scattering: PVDIS theory robust for ²H in valence quark region factor of 5 improvement: SOLID

New (Low Energy) Physics Examples

Many different scenarios give rise to effective 4-electron contact interaction amplitudes: significant discovery potential

MOLLER Science Overview

Global Context Summary

best contact interaction reach for leptons at low OR high energy: similar to LHC reach with semi-leptonic amplitudes

To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider

 $\delta(\sin^2\theta_W) = \pm 0.00023 \text{ (stat.)}$

Best projected uncertainties among projects being considered over next 10 years worldwide

- If LHC sees ANY anomaly in the mid-2020s
 - \star
- **Discovery scenarios beyond LHC signatures**
- Hidden weak scale scenarios \star
- Lepton Number Violating Amplitudes \star
- **Light Dark Matter Mediators** \star

 \star **MOLLER Science Overview**

$$\pm 0.00012$$
 (syst.) $\longrightarrow \sim 0.1\%$

The unique MOLLER discovery space becomes pressing, with a few others (e.g. g-2 anomaly)

Most sensitive discovery reach over the next decade for CP-/flavor-conserving or LNV scattering amplitudes

Alternatives Analysis Summary Table

	Reaction	sin ² θ _W Precision	Technical Requrements	Feasibliity	Cost	Possible Timeline	Comments
MOLLER	ee-ee	0.1%	11 GeV, polarimetry	reviewed	~ 40M\$	2025	
Other Møller	ee-ee	0.5%?	> 10 GeV e-e collider with spin	unknown	>> 100M\$	N/A	Possible JLEIC figure-8 modification
Other PVES	ee-qq	0.15 - 0.25 %	MESA P2 JLab SOLID	likely studied	30 - 70 M\$	2024 2027	additional hadronic uncertainties studied
Hadron Collider	qq-ee	0.1% 0.3%	> 300 inv. fb at LHC 250 inv. fb at EIC	likely likely	_	2025 2030s	Requires pdf uncertainty reduction
Lepton Collider	ee-µµ	0.1%?	> 500 GeV electron- positron collider	studied	> 1B\$	> 2035	No current plans to move forward
<i>Neutrino DIS</i>	νν-qq νμ-q ₁ q ₂	0.2%?	fine-grained large calorimeter + v beam	studied	> 100 M\$	~ 2030	DUNE Near-Detector upgr QCD uncertainties
Elastic Neutrino	v e- v e vv -qq	0.5%?	Reactor neutrino experiments	studied	unknown	unknown	Requires upgrades of exis plans
Atomic PV	ee-qq	0.3%?	Ra+, Cs, Fr or Th beams, custom apparatus	studies ongoing	unknown	unknown	Feasibility studies ongoing (Mainz, TRIUMF, KVI, Pure

Equipment Alternatives

- **Option A: Upgrade of Existing Detector**
- E158 at SLAC: quadrupole spectrometer concept insufficient for background rejection \star
- Qweak at JLab: Toroid particle acceptance at much larger scattering angles \star
- **Option B: Fabrication of Entirely New Apparatus**
- **Design flexibility to achieve combined precision and accuracy to meet scientific objectives** \star
- 7-fold toroidal symmetry; carefully sculpted field; highly segmented integrating detectors; \star upgraded hydrogen target
- **Option C: No Action**
 - Not considered: scientific goal and hence mission need cannot be addressed elsewhere

Recommended Alternative: Modified version of Option B

MOLLER Science Overview

 \star

Analysis of option A revealed that a few existing components can be reused, such as some elements of the electronics and data acquisition systems

MOLLER Physics Summary

- MOLLER represents an outstanding opportunity to take advantage of the unique instrument (11 GeV CEBAF beam) enabled by the 12 GeV upgrade
- The science case remains compelling and the plan is to run physics at about the time that precision results from high luminosity phases of 14 TeV LHC are becoming available
- The science goals cannot be accomplished in existing or planned facilities elsewhere worldwide

Appendix

MOLLER Science Overview

Sensitivity to 4-Lepton Contact Interactions from Low Energy and Colliders

$$\frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2|}} = \frac{1}{\sqrt{\sqrt{2}G_F |\Delta Q_W^e|}}$$

 $\simeq \frac{246.22 \text{ GeV}}{\sqrt{0.023 Q_W^e}} = 7.5 \text{ TeV}.$

Model	η^f_{LL}	η_{RR}^{f}	η^f_{LR}	η^f_{RL}
LL^{\pm}	± 1	0	0	0
RR^{\pm}	0	± 1	0	0
LR^{\pm}	0	0	± 1	0
RL^{\pm}	0	0	0	± 1
VV^{\pm}	± 1	± 1	± 1	± 1
AA^{\pm}	± 1	± 1		
VA^{\pm}	± 1		±1	

MOLLER Science Overview

95% C.L. Limits

Conventional Collider Contact Interaction Analysis: $\implies |g_{RR}^2 - g_{LL}^2| = 4\pi$

Simultaneous fits to cross-sections and angular distributions LEP200 $\Lambda^{\rm ee}_{
m LL} \sim 8.3~{
m TeV}$ $\Lambda^{
m ll}_{
m LL} \sim 12.8~{
m TeV}$ $\Lambda^{
m ll}_{
m RR}\sim 12.2~{
m TeV}$ $\Lambda^{
m ee}_{
m RR}\sim 8.2~{
m TeV}$ $\Lambda_{
m VV}^{
m ee} \sim 17.7~{
m TeV}$ $\Lambda_{
m VV}^{
m ll} \sim 22.2~{
m TeV}$

E158 Reach (actual limits asymmetric)

 $\Lambda^{\mathrm{ee}}_{\mathrm{LL}} \sim 12 \; \mathrm{TeV} \qquad \Lambda^{\mathrm{ee}}_{\mathrm{RR}-\mathrm{LL}} \sim 17 \; \mathrm{TeV}$

LEP-200 insensitive **MOLLER Reach** $\Lambda^{
m ee}_{
m R.R.-LL}\sim 38~{
m TeV}$

MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider

 $\Lambda^{
m ee}_{
m LL}\sim 27~{
m TeV}$

Weak Neutral Current (WNC) Couplings

 $C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \Longrightarrow$ $C_{2q} \propto (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \Longrightarrow$ $C_{ee} \propto (g_{RR}^{ee})^2 - (g_{LL}^{ee})^2 \implies \text{PV Møller scattering}$

Parity-Violating Electron Scattering

 $\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} \left[\overline{e} \gamma^{\mu} \gamma_5 e(C_{1u} \overline{u} \gamma_{\mu} u + C_{1d} \overline{d} \gamma_{\mu} d) \right] \left[\begin{array}{ccc} C_{1u} &=& -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W &\approx& -0.19 \\ 0 &=& 1 & 2 \sin^2 \theta_W &\approx& 0.25 \end{array} \right]$ $+\overline{e}\gamma^{\mu}e(C_{2u}\overline{u}\gamma_{\mu}\gamma_{5}u+C_{2d}\overline{d}\gamma_{\mu}\gamma_{5}d)] C_{2u} = -\frac{1}{2}+2\sin^{2}\theta_{W} \approx -0.04$ $+C_{ee}(e\gamma^{\mu}\gamma_{5}e\overline{e}\gamma_{\mu}e)$

 $C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35$ $C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx$

PV elastic e-N scattering, **Atomic parity violation PV deep inelastic scattering**

 $L_{f_1f_2}$

First PVES Measurement with TeV-scale sensitivity **Previous Measurement: SLAC E158**

$A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

MOLLER Science Overview

Phys. Rev. Lett. **95** 081601 (2005)

PVES Initiatives: Complementarity

$[2C_{2u} - C_{2d}]$

axial-quark couplings

- Qw^e and Qw^{p:}:same absolute shift, smaller for others
- High for Q_w(Cs), Qw^e(relative), smaller for others
- axial-quark couplings (C₂'s) only
- **Different for all four in sign and magnitude**
- semi-leptonic only; different sensitivities

A Fundamental Parameter of the Electroweak Theory The Weak Mixing Angle

MOLLER Projection: $\delta(sin^2\theta_W) = \pm 0.00023$ (stat.) ± 0.00012 (syst.)

 \pm 10 σ discovery potential at Q²<<Mz²

Mainz P2: 0.00031 (projected)

LHC (combined) and MOLLER/P2 (combined) will provide two combinations with uncertainties ~ 0.0002 in late-2020's

Tevatron: 0.00033 (combined)

LHC (combined) : ~ 0.00036 systematics-dominated (pdf uncertainties)

Best Sensitivity among Weak Charge Measurements

leptonic and semi-leptonic weak neutral current amplitudes

Complementary PVES measurements off Quarks: $\delta[\mathbf{Q}_{\mathbf{W}}(^{\mathbf{133}}\mathbf{Cs})/\mathbf{A}] \sim \mathbf{0.6\%} \Longrightarrow \mathbf{0.0033} \cdot \mathbf{G}_{\mathbf{F}}$

 $\delta[\mathbf{Q}_{\mathbf{W}}^{\mathbf{p}}] \sim 6\% \Longrightarrow 0.0045 \mathbf{G}_{\mathbf{F}}$ JLab Qweak

 $\delta[\mathbf{2C_{2u}} - \mathbf{C_{2d}}] \sim 5\% \Longrightarrow 0.004 \cdot \mathbf{G_F}$

$$\mathbf{A}_{\gamma} + \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{\text{new}} \Big|^{2} \rightarrow \mathbf{A}_{\gamma}^{2} \Bigg[\mathbf{1} + \mathbf{2} \Bigg(\frac{\mathbf{A}_{\mathbf{Z}}}{\mathbf{A}_{\gamma}} \Bigg) + \mathbf{2} \Bigg(\frac{\mathbf{A}_{\text{new}}}{\mathbf{A}_{\gamma}} \Bigg) \Bigg]$$

Deep Inelastic Scattering:

NuTeV measured a neutrino W/Z amplitude ratio to ~0.1%

Future improvements remain challenging to design: e.g. NuSONG proposal at Fermilab; fine-grained near detector at DUNE; coherent neutrino scattering detectors: none of the ideas come close to MOLLER in terms of weak mixing angle error projections.

Elastic v-electron Scattering: best The most aggressive reactor experiment direct comparison to MOLLER as a projections have fallen significantly purely leptonic low Q² measurement short of the proposed MOLLER goal

Matching MOLLER precision and accuracy likely requires beta-beams and neutrino factories

$$R^{-} = \frac{\sigma_{vN}^{NC} - \sigma_{\bar{v}N}^{NC}}{\sigma_{vN}^{CC} - \sigma_{\bar{v}N}^{CC}} \approx \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

$$= 0.2277 \pm 0.0013(stat.) \pm 0.0009(syst.)$$
 Standard Model prediction is 0.2
(3\sigma deviation)

Radiative Corrections

The Standard Model Prediction: Remarkably Well-Known

$$A_{PV} = \frac{\rho G_F Q^2}{\sqrt{2}\pi\alpha} \frac{1-y}{1+y^4+(1-y)^4} \left\{ 1 - 4\kappa(0) \sin^2\theta + \frac{\alpha(m_Z)}{4\pi\hat{s}^2} - \frac{3\alpha(m_Z)}{32\pi\hat{s}^2\hat{c}^2} (1-4\hat{s}^2) [1+(1-4\hat{s}^2)^2 + F_1(y,Q^2) + F_2(y,Q^2)] \right\}$$

$$\frac{\delta(Q_W)}{Q_W} \sim 10\% \Longrightarrow \frac{\delta(\sin^2 \theta_W)}{\sin^2 \theta_W} \sim 0.5\%$$

The small size of the coupling, further reduced by radiative corrections, will be a recurring theme: it eases the pressure on "normalization" errors

 $\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} = \mathbf{1} - 4 \sin^2 \theta_{\mathbf{W}} \sim \mathbf{0.075} \Longrightarrow \mathbf{0.045}$

