The MOLLER Experiment

Conceptual Design Primer

Tuesday, November 2, 2021

Krishna Kumar, MOLLER Collaboration Spokesperson UMass, Amherst

Outline

✦ **The MOLLER Measurement**

★ **The observable and the experimental goal**

✦ **Experimental Technique**

- ★ **Overview of a parity violating electron scattering asymmetry measurement**
- ★ **Unique Capabilities of 11 GeV Beam Delivery at Jefferson Laboratory**
- ★ **Overview of the MOLLER Apparatus**
- ★ **Relevant Experience from Previous Experiments**

✦ **The MOLLER Collaboration**

 $Q_W^e = 1 - 4 \sin^2 \theta_W \sim 0.075$

The Observable: PV Asymmetry in Møller Scattering

APV ~ 32 ppb δ(APV) ~ 0.8 ppb

11 GeV, 65 μA 90% beam polarization **Jefferson Lab polarized electron beam**

- **• Unique sensitivity to TeV scale physics coupling more to leptons than to quarks**
- **• Purely leptonic low Q2 reaction: theory prediction accurately calculable with negligible hadronic physics uncertainty**

COM Scattering Angle *The Weak Charge of the Electron*

 $\delta(Q^e w) = \pm 2.1 \% (stat.) \pm 1.1 \% (syst.)$

Conceptual Overview of the Experimental Measurement Technique

4th Generation PVES Experiment at JLab

MOLLER Science Primer **continuous interplay between hadron physics and electroweak physics**

State of the Art

reach and systematic control

 $+ \Delta A$

$$
\sum_j \Bigl(\boldsymbol{\alpha}_j\Bigl(\Delta \boldsymbol{X}_j\Bigr)_i\Bigr)
$$

Asymmetry Measurement Overview

Must minimize both random and helicity correlated fluctuations due to electron beam trajectory, energy and spot-size

I order: $x, y, \theta_x, \theta_y, E$ *II order: e.g. spot-size*

$$
A_{\text{pair}} = \frac{\Delta F}{2F}
$$

$$
A_{\text{cxp}t}\Big|_{i} = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_{i}
$$

After corrections, variance of Apair must get as close to counting statistics as possible: ~ 100 ppm (1kHz pairs); central value then reflects Aphys

1 kHz Pulse Pair Width: ~100 ppm 10 Billion Pairs: 1 ppb (average 107 s) Suppose instantaneous signal rate ~ 100 GHz and the beam helicity is reversed at 2 kHz

Detector D, Current $I: F = D/I$

$$
\mathbf{A}_{\text{pair}} = \frac{\mathbf{F}_{\text{R}} - \mathbf{F}_{\text{L}}}{\mathbf{F}_{\text{R}} + \mathbf{F}_{\text{L}}}
$$

Essential Characteristics of the CEBAF Polarized Electron Beam

24 Hours

Figure of merit rises linearly with beam energy: experiment not viable below a few GeV with current state-of-the-art

MOLLER will plan to use 1.96 kHz reversal to reverse the electron beam helicity **Systematic control likely**

MOLLER measurement cannot be done elsewhere; JLab's beam characteristics are unique

Extensive operation experience in manipulating injector characteristics to control systematics *10's of ppb beam charge asymmetry and ~ 1 nm control of position asymmetry*

impossible without a "cold" "CW" machine

Highly intense, stable, high energy electron beam with longitudinal beam polarization

CEBAF beam properties: 2 kHz time scale (~ppm, microns) AND days (~ppb, nm) must be carefully tuned, actively monitored and maintained with proper diagnostics

Uncertainty budget for A_{PV}

Projected Uncertainty Tables

$$
\sigma_{A_{c x p t}} = \frac{\sigma_{pair}}{\sqrt{N_{pair}}}
$$

Contributions to σpair - "Pair width"

Experimental design driven by these goals: Statistical error: Measure *Aexp*^t with precision ~ 2% **Systematic error:** Measure and/or minimize all systematic error sources so their individual contributions are < 1%, resulting in statistics limited experiment

$$
Combined \frac{\delta A_{PV}}{A_{PV}} = 2.4\%
$$

Beamline, Target and Polarimetry

Beamline and Beam Monitoring

- Redundant position, angle, intensity monitoring
- Intensity, position monitor resolution requirements

Electron Beam Polarimetry

- Two independent measurements
- Compton: continuous monitor
- Møller: invasive at low beam current

Main requirement: minimize target density fluctuations (Δρ/ρ): $Γ_{target} < 30$ ppm for 70 μA, 5x5 mm² raster, 1.92 kHz flip

Liquid Hydrogen Target

- up to 70 μ A on 125 cm LH₂ target 3.7 kW
- Q_{weak} experience: use of CFD (computational fluid dynamics)

Spectrometer and Collimation

-
-
-

Primary and Auxiliary Integrating and Tracking Detectors

asymmetry measurements of both signal and background, and beam and target monitoring

spectrometer calibration, electron scattering angle distribution, and background measurements **Tracking (counting mode) detectors:**

- Integration mode DAQ & trigger -*Collect & analyaize100% of the helicity windows*
- Counting mode DAQ & trigger -*input rates between 10~kHz and 300~kHz*
- Gas electron multipliers (GEM) detectors
- "Pion" acrylic Cherenkov detectors

Readout Electronics:

Relevant Technical and Operational Experience from 3rd Generation Experiments

Detectors

UVA GEM

AT Detectors

Radiation Shielding: Close collaboration between collaboration physicists, engineers and Radiation Safety

Outstanding Beam Performance During PREX-2 and CREX

Careful configuration of the polarized source kept

MOLLER Collaboration: ~ 160 authors, 37 institutions, 6 countries

Other Executive Board Members

MOLLER Working Groups

Spokesperson: K. Kumar, UMass, Amherst Executive Board Chair and Deputy Spokesperson: M. Pitt, Virginia Tech

MOLLER Science Primer **Polarized Source Beam Instrumentation Hydrogen Target Spectrometer Integrating Detectors Tracking Detectors Hall Integration Polarimetry Electronics/DAQ/Offline Simulations Physics Extraction**

D. Armstrong (William & Mary), J. Fast (JLab), C. Keppel (JLab), F. Maas (Mainz), J. Mammei (Manitoba), K. Paschke (UVa), P. Souder (Syracuse U.)

MOLLER Project Personnel **Project Leads Control Account Managers Technical Leads** J. Fast, MOLLER Project Manager

Summary

-
- ✦ **The science case remains compelling and the plan is to run physics at about the time that precision results from high luminosity phases of 14 TeV LHC are becoming available**
- ✦ **The science goals cannot be accomplished in existing or planned facilities elsewhere worldwide**
- ✦ **Mature conceptual design and advanced preliminary engineering design** leveraging 3rd generation parity violation experiments and prototyping
efforts during pre-R&D phase

✦ **MOLLER represents an outstanding opportunity to take advantage of the unique instrument (11 GeV CEBAF beam) enabled by the 12 GeV upgrade**

✦ **An enthusiastic and well-experienced international collaboration with an integrated project team is eager to complete the engineering design and launch into construction and deployment of the apparatus, followed by**

commissioning, data collection and physics analysis

Appendix

Significant Prototyping and Validation from R&D Efforts

SLAC TEST BEAT Shower-max **PREX GEMS Prototype** at SLAC Test Beam

Ultimate Performance Parameters for Full Scientific Discovery Potential

• Produce a full acceptance profile at the thin quartz detectors with the tracking detectors with ≥ 90% tracking efficiency and <1 mm single hit position resolution;

• Verify end-to-end beam transport by confirming predicted rates in each ring of the thin quartz detectors are as expected to better than 25%;

• Measure the e-p leakage correction to the Moller ring 5 rate to better than 10%

• Measure the 0.96 kHz equivalent pulse-pair asymmetry width to be smaller
than 120 ppm at 65 microamps and measure the main Moller asymmetry to better than 14% statistical and 17% combined uncertainty, comparable to

-
-
- accuracy;
- SLAC E158.
-

• LH2 target stable with ≥ 4kW beam heating. Density fluctuation < 60 ppm.

Primary UPP that captures overall integrated system performance and proves that final experiment precision is achievable with additional data

Qweak Target Noise

Target density fluctuations vs. LH2 pump speed, flowing the LH2 faster reduces the target noise \sim inversely proportional with the pump speed

Measured asymmetry width (σ_m) is an uncorrelated sum between counting statistics (σ_0) and target noise (σ_b)

Target density fluctuations vs. quartet helicity frequency, the Qweak yield data has been regrouped to form asymmetry quartets in the range 7.5 – 1920 Hz, flipping the helicity faster reduces the target noise \sim f^{-0.38}

• MOLLER requires 2kHz helicity flip rate, but the Pockels cell which controls the helicity needed to be very fast (<10us

New RTP Pockels Cell and Beam Performance During PREX-II

-During last year's PREX-II run, we have achieved the full table of requirements for MOLLER Run-I (necessary for the

- PREX Performance:
	- UPP's)
	- **reduction in dead time at the higher rep. rate**)

-This was achieved using the new Pockels cell that is critical for MOLLER (**risk retired, due to the required**

- R&D on the Pockels Cell:
	- transitions) to take data at this rate; previous technology would result in up to 20% dead time loss
	- This requirement motivated innovation in the PC design using RTP (Rubidium Titanyl Phosphate) material.
	- **enhanced tools to control beam position asymmetries)**

• **R&D on the Pockels Cell was crucially necessary for MOLLER primarily to reduce dead time (as well as**

PREX Detectors

- PREX-II took place over summer 2019 and completed successfully in early September 2019 \triangleright Integrated flux rates were $>$ 2 GHz per arm (Left and Right HRS); 26% detector resolution
- MOLLER Science Primer • CREX (Calcium Radius Experiment) ran from Dec 2019 to March 2020 using same apparatus as PREX-II; ran 6 more weeks in Aug – Sep 2020

PREX shielding strategy: localize power deposition and requisite shielding

Target and collimator needed upward shielding to reduce boundary dose

DS half of collimator and support box encased in concrete to protect septum

GEM Technology

SBS GEMs cosmic test stand

PRad GEMs assembly

. Thermal imaging during full current testing

Temp gradient on nose. Hotspot delta = 23.3 C

Out-of-plane bend. Hotspot delta = 29.7 C

Prototype Coil (SBU, MIT-Bates and Everson Tesla

- Fabrication at vendor

Main Integrating Detector Concept and Layout Challenges

Cherenkov Physics constraints on the **main detector assembly:**

- **low mass except for quartz**
- 25 • **Design must allow ease of installation, deinstallation and maintenance**

Wide variation in flux intensity and weights of different scattering processes: 1) e-e, 2) elastic e-p, 3) inelastic e-p

100% Azimuthal Acceptance for Møller Scattering

