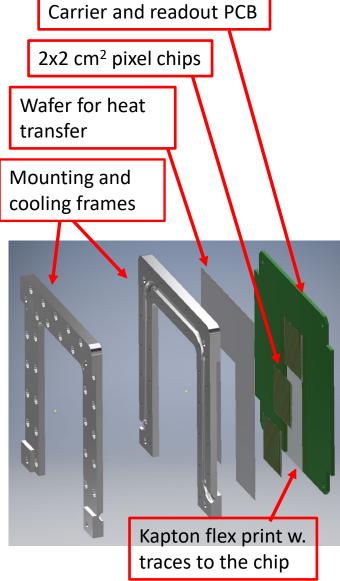


HVMAPS Update (Compton and Ring 5)

MOLLER Collaboration Meeting December 2021

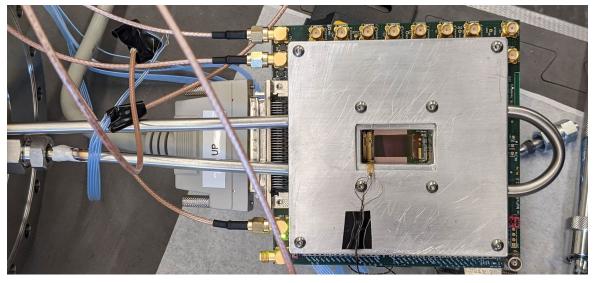
Michael Gericke

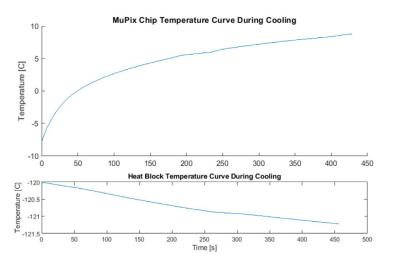
- HVMAPS for Compton
- HVMAPS for Ring 5 Profile Mapper
- General Status of things
- Near-Terms Plans

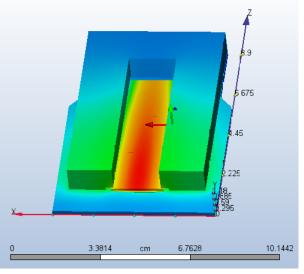

HVMAPS pixel detectors for the Compton E-Det:

Electron detectors

- 4 pixel detector planes
- HVMAP pixel detectors
- 3 2x2 cm² chips per plane
- 80x80 μm pixels

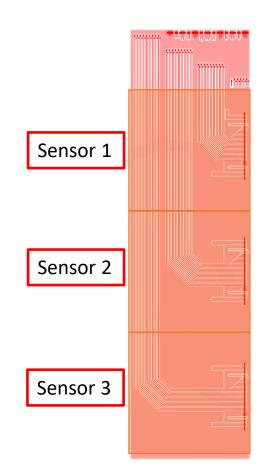


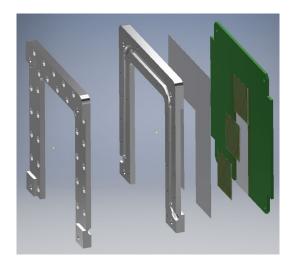



HVMAPS pixel detectors for the Compton E-Det:

- The full $2x2 cm^2$ chip draws about 1 Watt
- We need some form of cooling inside the vacuum
- Shown on the left is a prototype board that was located in a test vacuum chamber
- Final implementation has no other electronics inside the vacuum, besides the detector chip
- The powered chip does not heat up with cooling
- Only during active readout does chip heat up
- Readout digital electronics cause draws most of the power
- Plan to have the chip edge in thermal contact with a cooled heat sink (water-glycol?)

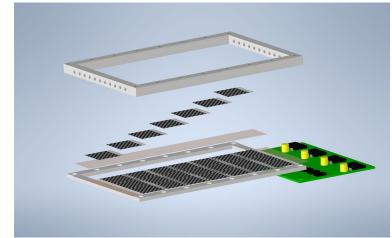
Work by Nafis Niloy

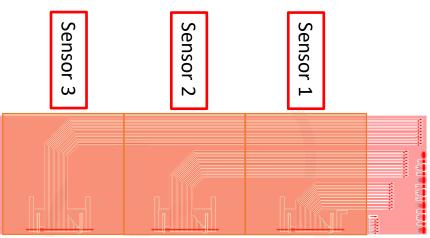


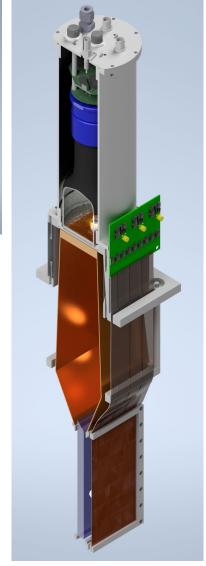


HVMAPS pixel detectors for the Compton E-Det:

- Plan to have 3 HVMAPS per flexprint
- About 30 data lines per plane + GND, VDD, Sense
- Flexprint to end of chip block PCB then connect to ribbon cable
- Ribbon to outside vacuum onto custom designed readout board:
 - Main purpose is to connect to commercial FAPGA board
 - Considering rad hard CERN developed lpGBT and VTRX+
- Need to produce new translation stage and top-flange design
- Continue with actual mounting block design and more cooling tests this summer.
- Plan is to use final MuPix design for this purpose delayed by a few months

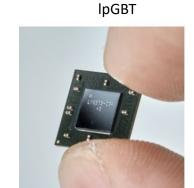


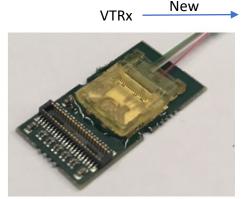




Conceptual design for each Ring 5 Quartz tile

- bond 7 chips to a flex-print
- have 4 such strips per detector
- secure strips between the two frames
- two component $100 \times 154 \ mm^2$ frame to stretch the flexprint and provide air flow
- Flexprint / ribbon cable past the light guide and through the module mount plate to readout board
- 28 chips per ring 5 tile 28 Watt (!)
- 20 meter cable would be gauge ~13 one for each chip + return and sense

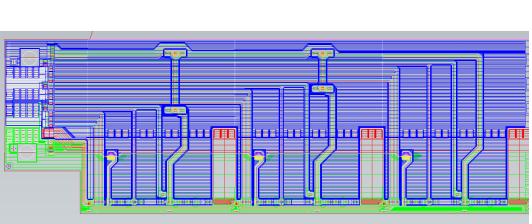


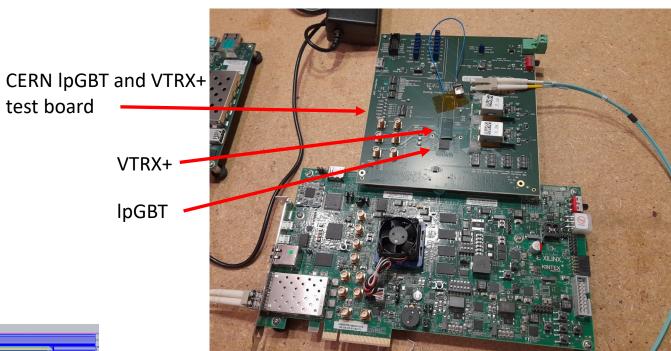


Conceptual design for each Ring 5 Quartz tile

- Readout from the detector module can be done via low power gigabit transceiver (IpGBT) SER/DES chip and the associated VTRx optical transceiver.
- Both were developed by CERN for the LHC experiments and are radiation hard
- Verified that we can place order from CERN directly from Manitoba
- Nilanga purchased a full set for us to prototype with (thank you !!!)
- The other end would be a commercial Xilinx FPGA board – Xilinx kcu105 currently used for prototyping

New HVMAPS chip production to start in 2022:

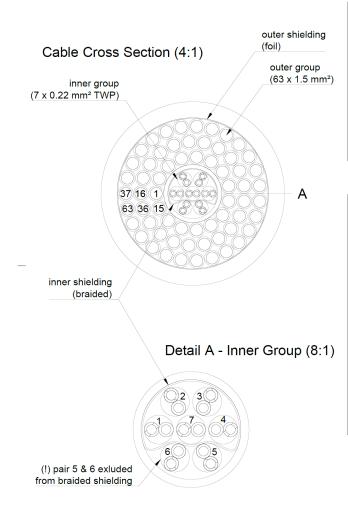

- Implement gated readout from chip
- Adjust design to match the lpGBT protocol
- Can use one lpGBT for 7 HVMAPS
- Can use one VTRx for 4 lpGBT chips
- Readout 28 HVMAPS with this combination
- Need 84 fiber connections (VTRx)
- Need 336 of the lpGBT chips
- Readout (TX) at 1.28 Gb/s
- RX at 160 *Mb/s*



Prototyping:

- Started to work with the CERN test board
- Both the lpGBT and the VTRX+ need to be integrated in custom readout boards
- Flexprint development underway

Work by Preeti Pandey



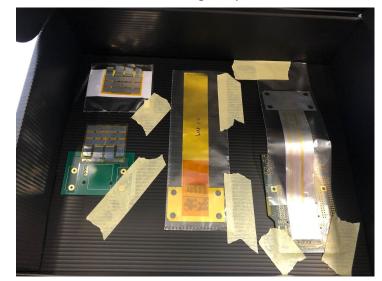
Cabling:

- Cable design for the P2 HVMAPS tracking detector
- We would need ~2 of these per segment
- Shorter cable is definitely better ...
- We would need three fiber connections per segment

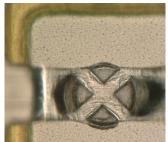
I .							
Outer Group							
Conductor No.	Count x Colour	Construction	Electrical				
1, 3, 5, 7, 9, 11, 13, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61	29 x RD	1.5 mm² (65 x Ø0.16)	27 A @ 2.0 V				
15, 63	2 x WH	1.5 mm² (65 x Ø0.16)	2.25 A @ 1.2 V				
17	1 x BL	1.5 mm² (65 x Ø0.16)	0.4 A @ 2.5 V				
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62	31 x BK	1.5 mm² (65 x Ø0.16)	29.65 A @ 0 V (RTN)				

Inner Group						
Pair No.	Colour	Construction	Electrical			
1	GN-WH	2 x 0.22 mm² (7 x Ø0.203)	RSEN_2V0_P (2 V nom.)			
	GN		RSEN_2V0_N (RTN)			
2	YE-WH	2 x 0.22 mm² (7 x Ø0.203)	RSEN_1V2_P (1.2 V nom.)			
	YE		RSEN_1V2_N (RTN)			
3	RD-WH	2 x 0.22 mm² (7 x Ø0.203)	RSEN_2V5_P (2.5 V nom.)			
	RD		RSEN_2V5_N (RTN)			
4	BK-WH	2 x 0.22 mm² (7 x Ø0.203)	RSEN_HV_P (100 V nom.)			
	BK		RSEN_HV_N (RTN)			
5	GY-WH	2 x 0.22 mm² (7 x Ø0.203)	10 mA @ 100 V			
	GY		10 mA @ 0V (RTN)			
6	PK-WH	2 x 0.22 mm ² (7 x Ø0.203)	10 mA @ 100 V			
	PK		10 mA @ 0V (RTN)			
7	BN-WH	2 x 0.22 mm² (7 x Ø0.203)	TBD			
	BN		TBD			

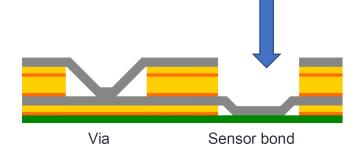
Dept.	Technical reference	Created by	Approv	ed by	
		Lars Steffen Weinstock 29.12.21			
		Document type	Docum	ent status	
Δ (\rightleftharpoons			PRELIMINARY		
II	\mathcal{M}	Title	DWG No.		
Derger		P2 Tracker Supply Cable Ver. 0			
r)	Cable Vel. U	Rev.	Date of issue	Sheet
					1/1

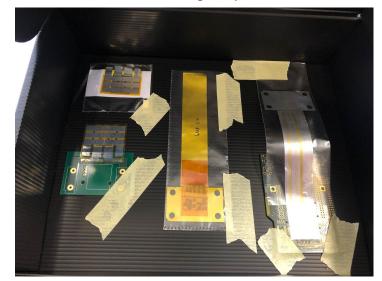


Conceptual design for each Ring 5 Quartz tile

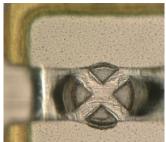

- Flexprint-chip prototype test bonding was done in October
- Purchase of bonder completed

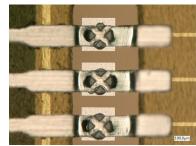
Bonding samples

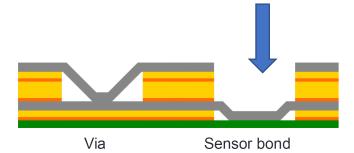




Conceptual design for each Ring 5 Quartz tile


- Flexprint-chip prototype test bonding was done in October
- Purchase of bonder completed


Bonding samples



Near-term tasks:

- Complete flexprint design for both, the 3 chip Compton ladder and the 7 chip ring 5 ladder (issue: Flexprint company is located in the Ukraine)
- Modify chip design to include gating option and match to IpGBT clock (depends on designer schedule)
- Develop prototype mounting structure for Compton E-det and redo cooling tests (Nafis)
- Develop prototype readout board (issue: Recently lost engineer to industry rehiring)
- Develop mounting structure for ring 5 profile mapper and cooling concept
- Develop gluing and bonding setup for the HVMAPS flexprint assembly (Nafis)

The biggest issue at the moment is lack of people working on the HVMAPS.