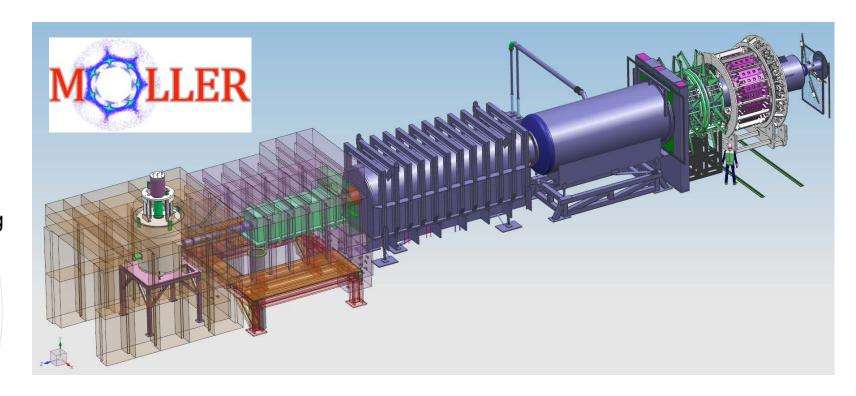
MOLLER Spectrometer – WBS 1.03


MOLLER Collaboration Meeting

June 21-22, 2022

Prototype Coil Test, MPS, I&C and Mapping

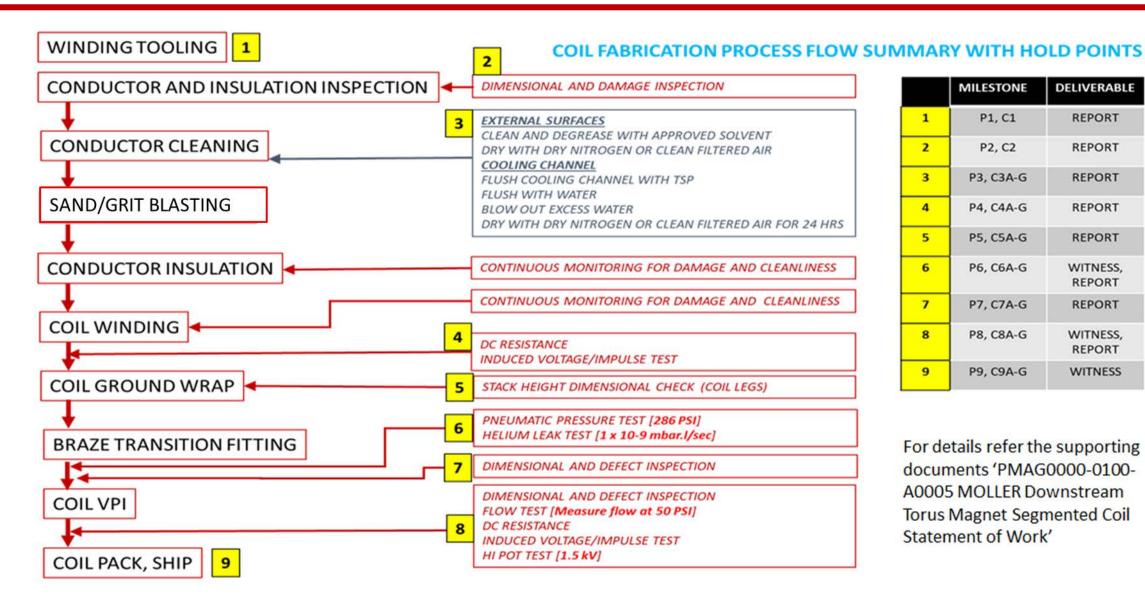
Probir Ghoshal

Team - Magnet Group/ENP/Engineering
Jefferson Lab

Outline

- > Prototype Coil Test
 - Engineering requirements
 - □ Coil Fabrication
 - QA&QC checks
 - Measurements and factory test
 - ☐ JLAB Coil Acceptance Tests
 - Prototype coil test facility
 - Prototype coil test setup
 - ☐ MPS and I&C
 - Layout
 - Protection system layout
- > Magnet Mapping requirements
- > SUMMARY

Prototype Coil test


- ☐ The key component of the prototype coil is the **fabrication and testing of a full size pre-production** coil (i.e. four sub-coils)
- ☐ Physics Requirements translated into Engineering Requirements

Reference -

- 1. PMAG0000-0100-A0007 MOLLER Upstream and Downstream Coil Functional Requirements
- 2. PMAG0000-0100-A0008 MOLLER Spectrometer Functional Requirements
- Measurements and tests planned as part coil fabrication
 - Vendor fabrication of coils individual coils
 - Visual inspection
 - Dimensional checks
 - Leak test (pressure & He)
 - Coil Hi-pot
 - Resistance and Inductance check
 - Testing of coils on receipt at JLAB individual coils (low current and high current)
 - The prototype coil allows us to verify and validate: our design and the vendor's manufacturing process
 - Flow, temperature gradient, pressure drop validate JLAB design

Vendor Coil Fabrication - individual coils

	MILESTONE	DELIVERABLE
1	P1, C1	REPORT
2	P2, C2	REPORT
3	Р3, СЗА-G	REPORT
4	P4, C4A-G	REPORT
5	P5, C5A-G	REPORT
6	P6, C6A-G	WITNESS, REPORT
7	P7, C7A-G	REPORT
8	P8, C8A-G	WITNESS, REPORT
9	P9, C9A-G	WITNESS

For details refer the supporting documents 'PMAG0000-0100-A0005 MOLLER Downstream Torus Magnet Segmented Coil Statement of Work'

JLAB Coil Acceptance Tests - Prototype Coil Test Facility

Moller at Magnet Measurement Facility

Existing OCEM – MPS

- ☐ 166 kW PS, Vmax = 200V, Imax = 830A, connected to EPICS controls
- □ DC Power is currently performing maintenance and certification testing on the PS in progress....

Facility

- 10T Overhead Crane
- ☐ Surface plate up to 5m length
- \Box LCW connections ($\Delta P = 73$ psi, Psupply = 110 psi, Tin = 35 deg C)
- □ Safety beacons (Entrance Doors/Power Supply's) and red-white electrical Limited Approach Boundary
- OSP's available for testing

Test of Prototype coil in test lab (USING the basic control hardware from Dump solenoid in UITF)

- ☐ Primary Control using PLC Based: Allen Bradley CompactLogix
- Local Control only, network access only for archiving to JLAB OPS
- ☐ Direct Interlock capability 5 or 24 VDC (e.g. voltage, temperature, field, flow, etc.)
- ☐ Magnet is used to pretest the set up for the prototype coil inspection (HDIce Dump solenoid 320A)
- ☐ All I&C and control and read back to EPICS with the MPS in the Magnet Measurement Lab
- □ Address the operating parameters and requirements for testing Flow, temperature, pressure, current, and voltage (available from operating manual max I=320A)

Acceptance Tests and Status of activities

Coil Testing - Mechanical & electrical inspections, and tests shall be performed on each (all individual coils)

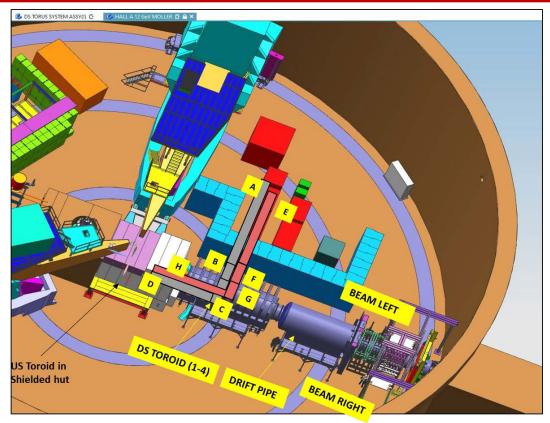
- ☐ Dimensional inspection made to verify conformance to drawing and specification requirements.
- Pressure leak check and helium leak check
- DC Resistance and inductance measurement
- DC Hi-pot tests (Line to GND) establish an intimate Ground plane each circuit at 1.5 kV, e.g. at the clamping location(s).
- □ Water Circuit Test Flow, pressure drop and temperature tests (low current test @800 A)
 - establish and evaluate mechanical and thermal stability of the coil with reduced flow (per flow path)

Status of activities

- □ Power Supplies Functional requirements PMAG0000-0100-S0015 MOLLER (COMPLETE)
- ☐ Physics and Engineering Requirements for Magnet Power Supplies (COMPLETE)
- Magnet Power Supplies Specification Document both US & DS PMAG0000-0100-A0014 (COMPLETE)
- ☐ Prototype MPS (DS Torus3) ORDER PLACED with OCEM, Italy.
- ☐ Hall A Location of PSUs and Lead Routing (COMPLETE)
- Water-Cooled Leads, Air-Cooled Jumpers Design (COMPLETE) and Interfaces (IN PROGRESS)
- ☐ Control, Instrumentation (IN PROGRESS, ALONG WITH P&ID)
- Environment Safety and Health (IDENTIFIED AND INCORPORATED AS REQUIRED)
- ☐ Test Lab set-up and plan for the prototype coil (In Measurement Lab)
 - Challenges with MPS for test (Low current test and high current test)

The total number of power converters with their respective ratings are listed in the following **Table 2**. The ratings listed here includes the 120% of voltage margin stated in §1.0 and 120% of peak current capability stated in §4.2.1.iii. of the reference document [a]

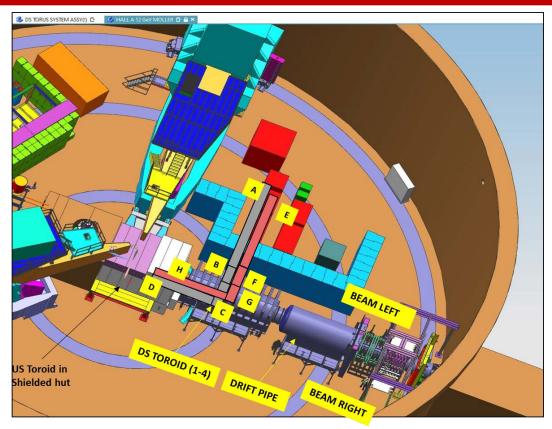
Magnet Type/Name	Q.ty of Power Converters	Туре	Peak Current [A]	Max. Voltage [V]	Rated Power [kW]
US Torus	1	Monopolar	1290	93	84
DS Torus - 1	1	Monopolar	2676	48	90
DS Torus - 2	1	Monopolar	2928	50.4	103
DS Torus - 3	1	Monopolar	3882	68.4	185
DS Torus - 4	1	Monopolar	4020	269	751


Table 2 - Power converters required

Magnet Power Supplies, I&C: Routing from MPS bunker to enclosure

ID	Route	Height above hall floor (m)	Length (m)
	DS TOROID CURRENT LEAD ROUTING	-	
Α	From top of magnet power supplies to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
В	90° vertical drop to hall floor	3.4 to 0	3.4
С	From outside of bunker wall to underside of DS toroid	0	4.0
	TOTAL FOR DS TORUS (no margin)		22.4
	DS TOROID INSTRUMENTATION LEAD ROUTI	NG	
E	From top of instrumentation racks to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
F	90° vertical drop to hall floor	3.4 to 0	3.4
G	From outside of bunker wall to underside of DS toroid	0	4.0
н	Along floor and up to feedthroughs on underside of DS toroid	0 to 1.29	3.7 + 1.29
	TOTAL FOR DS TORUS (no margin)		27.4

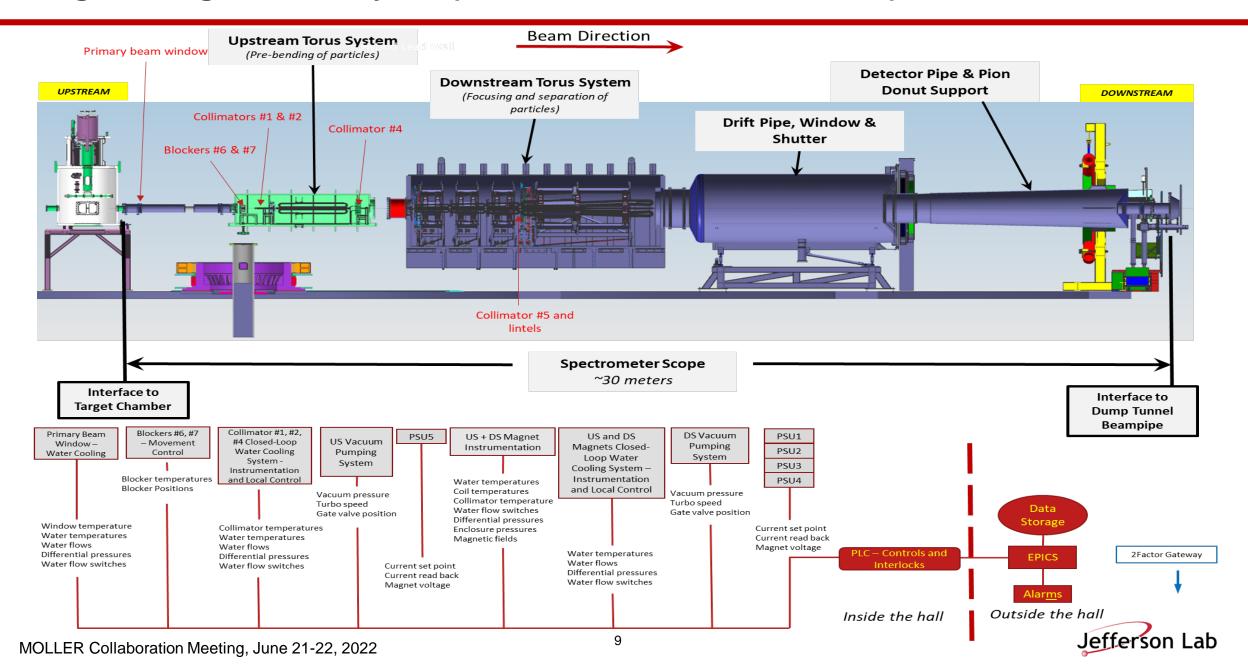
ID	Route	Height above hall floor (m)	Length (m)
	US TOROID CURRENT LEAD ROUTING		
А	From top of magnet power supplies to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
В	90° vertical drop to hall floor	3.4 to 0	3.4
С	From outside of bunker wall to underside of DS toroid	0	4.0
D	Along floor to un derside of US toroid	0	5.6
	TOTAL FOR US TORUS (no margin)		28.0
	US TOROID INSTRUMENTATION LEAD ROUTI	NG	
E	From top of instrumentation racks to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
F	90° vertical drop to hall floor	3.4 to 0	3.4
G	From outside of bunker wall to underside of DS toroid	0	4.0
н	Along floor and to center of DS toroid	0	3.7
1	From center of DS toroid, along floor and up to feedthroughs on US toroid	0 to 1.29	5.6 + 1.29
	TOTAL FOR US TORUS (no margin)		32.99



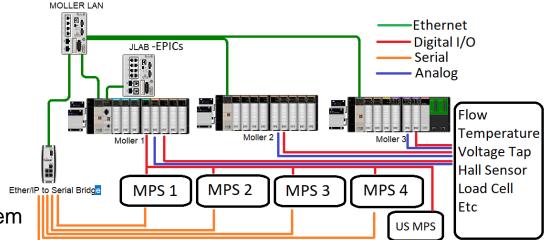
- 1. The water cooled leads/bus design and specification COMPLETE
- 2. At the **PSU** end Flexible copper air-cooled jumpers connect the PSU bus bars to the water-cooled leads, bolted connection (1 jumper per GO and RETURN lead is required). **COMPLETE**
- At the MAGNET end Flexible copper air-cooled jumpers connect the magnet feedthroughs to the water-cooled leads (Multiple jumpers per GO and RETURN lead are required). - COMPLETE
- 4. Conductor sizes per GO or RETURN lead COMPLETE
- 5. Voltages and kW values for **both** GO and RETURN leads and all jumpers COMPLETE
- 6. MOLLER Spectrometer Spec and RFQ US_DS Magnet WCL & Jumper leads PMAG0000-0100-S0017 (Draft completed)

Magnet Power Supplies, I&C: Routing from MPS bunker to enclosure

ID	Route	Height above hall floor (m)	Length (m)
	DS TOROID CURRENT LEAD ROUTING		
Α	From top of magnet power supplies to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
В	90° vertical drop to hall floor	3.4 to 0	3.4
С	From outside of bunker wall to underside of DS toroid	0	4.0
	TOTAL FOR DS TORUS (no margin)		22.4
	DS TOROID INSTRUMENTATION LEAD ROUTI	NG	
E	From top of instrumentation racks to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
F	90° vertical drop to hall floor	3.4 to 0	3.4
G	From outside of bunker wall to underside of DS toroid	0	4.0
н	Along floor and up to feedthroughs on underside of DS toroid	0 to 1.29	3.7 + 1.29
	TOTAL FOR DS TORUS (no margin)		27.4


ID	Route	Height above hall floor (m)	Length (m)
	US TOROID CURRENT LEAD ROUTING		
Α	From top of magnet power supplies to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
В	90° vertical drop to hall floor	3.4 to 0	3.4
С	From outside of bunker wall to underside of DS toroid	0	4.0
D	Along floor to un derside of US toroid	0	5.6
	TOTAL FOR US TORUS (no margin)		28.0
	US TOROID INSTRUMENTATION LEAD ROUTI	NG	
E	From top of instrumentation racks to exit at top of bunker (just below bunker roof), at outside wall of bunker	3.4	15.0
F	90° vertical drop to hall floor	3.4 to 0	3.4
G	From outside of bunker wall to underside of DS toroid	0	4.0
н	Along floor and to center of DS toroid	0	3.7
1	From center of DS toroid, along floor and up to feedthroughs on US toroid	0 to 1.29	5.6 + 1.29
	TOTAL FOR US TORUS (no margin)		32.99

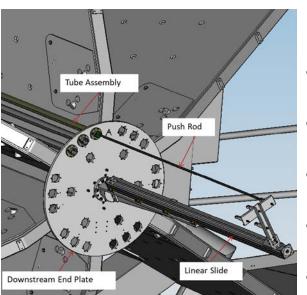
- 1. The water cooled leads/bus design and specification COMPLETE
- Both PSU and Magnet end Flexible copper air-cooled/in vacuum jumpers -COMPLETE
- MOLLER Spectrometer Spec and RFQ US_DS Magnet WCL & Jumper leads PMAG0000-0100-S0017 (Draft completed)


Engineering – Basic layout (Instrumentation and Control)

Magnet Power Supplies, I&C: Protection System layout

Sensor Node based controls

- ☐ Primary Control provided by master processor with 1g/b Ethernet Interface
- Dual Ethernet Interface
 - 1 for JLAB: IOC/EPICS, remote programming, remote diagnostic
 - o 2 for Private Local Network for critical instruments
- ☐ Direct Interlock capability 5 or 24 VDC (e.g. voltage, temperature, field, flow, etc.), each Chassis can independently safe out the system
- □ Primary protection is accomplished using one hardwired multichannel voltage tap readout chassis
- ☐ A second multi-channel voltage tap readout runs through a PLC.
- Each chassis reads the same voltage taps and performs the comparator function in parallel
- ☐ Chassis is JLAB designed FPGA system and targeting 100hz to 2.7khz sample rate. All hardwire interlocks shared with system master digital input for monitoring and diagnostics
- ☐ Heartbeat messages are sent across nodes via Ethernet allowing automated response during communication outages
- ☐ Secondary protection is on outlet temperature of each coil

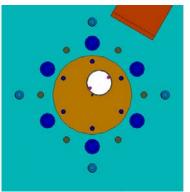

MOLLER – Mapping REQUIREMENTS

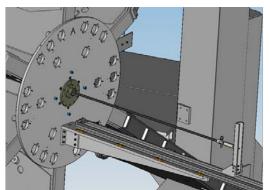
Mapping specification - definition wrt the accuracy and location requirements.

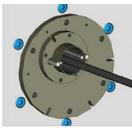
- Mapping design tool for mapping all sector (TBD) plus the central bore.
- Uncertainty in variation of field from sector to sector Things beyond measuring
- modification(s) to match the coil geometry to produce field map...

Complete Magnet – after assembly of magnet

- BMOD measurements (radially focusing component of field, BMOD) along Z in an open sector at r = 135 mm (TBR)
- Determination of magnetic center, measurement of any dipole moment in the bore
- Stray field measurements (location of 5 Gauss line)


Mapping Tool used in HALL B Torus/Solenoid


- Precisely machined upstream and downstream plates
- The plates will be surveyed prior to install to know hole locations
- Precise pins locate and orient the carbon fiber tubes
- Pins assure locating/repeatability of carbon fiber tubes to 0.05mm
- Linear slide/motor/controller accurate to 0.010mm


Individual Coils - during fabrication and on receipt at JLab, Quality Assurance/Quality Check for each coil - Gauss/Amp, Polarity

Mapping Tool Operation-Mapping the Bore

- The bore has a total of seven locations mapped
- The center tube is offset from the collar center to take the 2.5cm radius measurement
- The assembly is rotated for each angle while maintaining the required local coordinate system orientation

Summary

- ☐ Engineering test requirements are defined
 - Conductor design → Coil design → Test requirements (Low current test)
- Quality Assurance and Quality Control (QA/QC) process requirements at vendor and JLab
 - Verification and validation of the specifications (defined)
 - Vendor fabrication of coils and tests (defined)
 - OSP's in place for the test in the Magnet Measurement Lab
 - Acceptance testing of coils on receipt at JLAB (defined)
 - Performance testing to evaluate JLAB Coil Acceptance for individual coils
- MPS Order in place for the prototype MPS (DS Torus-3)
- ☐ The WCL and jumpers draft specifications are complete
- □ P&ID's are in place and list of instrumentation is been populated
- Instrumentation and control philosophy is defined
- Magnet Protection/Interlocks logics are defined
- ☐ Hardware and software development required for the system are identified and the work is in progress
- Moller mapping requirements are worked upon
 - Intent to use concept and tooling used in 12 GeV Hall B torus and solenoid mapping

