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Goals

e Use simulation output root files of part 1 of the project
e Use RootScript.C as atemplate script and create a root script relevant for

above study
e Use the output of this script to study the effects of slit scattering from

collimator
o  We will look at Photons (pid=22) hitting the sensitive detector (det id 47) we created
previously at GDML overview session



Prerequisites

e Files required for the tutorial are available at Hands-On-Remoll in

https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjR
sfB?usp=sharing

e Download the file RootScript.C into ~/softwares/remoll/analysis
e therootfiles remollout Moller gen 2k.root and

remollout Moller gen Krypto Z2k.root
o Both of these files are also available in Hands-On/Rootfiles directory in shared Google Drive
o Make sure these rooffiles are in ~/softwares/remoll/


https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjRsfB?usp=sharing
https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjRsfB?usp=sharing

Root Scripting: Histogram Declarations

RootScript.C is our template script, we will create histograms of hit radius, xy 2D distribution and
source vertex of these hits on Det-47

1. Declare 1D histograms for radius and source vertex

TH1D *r

TH1D *sourceZ

TH1D *rRate //for rate weighted radial distribution
2. Define 2D histograms for XY distribution

TH2D *hXY

TH2D *hXYrate //for rate weighted XY distribution



Root Scripting: Histogram definitions
e Let's define their parameters and create them inside initHisto() routine

r = new THI1D("xr","Detd47 radial distribution;r[mm]",200,0,600);

rRate = new THID("rRate","Det 47 rate weighted
distribution;r[mm]",200,0,600);

hXY = new TH2D ("hXY","2D hit distribution;x [mm];y
[mm]",200,-600,600,200,-600,600);

hXYrate = new THZ2D ("hXYrate","rate weighted 2D hit
ditribution;x [mm];y [mm]",200,-600,600,200,-600,600);

sourceZ = new THID("sourcez","initial vertex for hit ;=z
position [mm]",10000,-5300,8000);



Root Scripting: Proper Cuts

e Let's set the proper cuts to match our analysis, cuts are applied in the

processOne (.. .) routine
o Select only photons

if(hit->at(j) .pid!=22) continue;
o Select hits only on detector id 47
if(hit->at(j) .det != 47) continue;

e Next we fill histograms



Root Scripting: Filling Histograms

e Let's fill these histograms with data from the Tree in at the
processOne (.. .) routine
r->Fill (hit->at(j) .r);
sourcez->Fill (hit->at (j) .vz);
hXY->Fill (hit->at(j) .x,hit->at(3) .vy)
rRate->Fill (hit->at(j) .r, rate);

hXYrate->Fill (hit->at (j) .x,hit->at(j) .y, rate);



Root Scripting: Post Processing

e Scale rate weighted histograms if we have used chain of root files (more than
one root filed linked) in the void scale () routine
rRate->Scale(1l./nFiles) ;

hXYrate->Scale (1l./nFiles);



Make Histograms in Canvases: Create a Canvas

e Inroutine void plot ()
e Let's create a canvas

Double t w = 600;//width px Canvas textid Canvas title
Double t h = 600;//height px //// /
TCanvas *pl = new TCanvas ("TCan sourcez","Source Z

Canvas",w,h);

‘\\\\\\\\\ Canvas size



Format Histogram and Draw on the Canvas

e Use the function: gStyle->SetOptStat ("nemr") ; toformat histogram
stat box information: n-name, e-events, m-mean, r-rms

e Draw the vertex histogram on the p1 Canvas : sourceZ->DrawCopy () ;

e You can save the canvas as an image to formats including pdf or png:
pl->SaveAs ("TCan sourceZ.png") ;

e This command will save the canvas p1 with the histogram source?Z as an
image file.
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Make Histograms in Canvases: Create a Canvas

e Let's create the second canvas

w = 1000;//width px
Canvas textid Canvas title

h = 1000;//height px / /

TCanvas *p2 = new TCanvas ("TCan rate xy","Radial and XY
hits",w,h);



Make Histograms in Canvases: Divide the Canvas

Let’s create the canvas p2 with multiple pads : p2->Divide (2,2) ;//nx,ny
o Above command creates 2 by 2 = 4 pads in the canvas

Let’s add four histograms into this canvas
p2->cd (1) ;

r->DrawCopy () ;

p2->cd (2) ;

rRate->DrawCopy () ;

p2->cd (3) ;

hXY->DrawCopy () ;

p2->cd (4) ;

hXYrate->DrawCopy () ;
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Save Output into a Root File for Later access
e Output written in this step can be accessed later in a root file “RootScript.root”
e Inthe routine void writeOutput ()
r->Write();
sourceZ->Write () ;
hXY->Write () ;
rRate->Write () ;

hXYrate->Write () ;
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Save Output into a Root File for Later access

e Output written in this step can be accessed later in a root file
“RootScript.root”

e This file name is set in the routine void initHisto ()
string foutNm = Form("RootScript.root");
e You can access the saved histograms using the command

root RootScript.root or ./build/reroot RootScript.root
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Analysis Steps

1. We will first run the script RootScript.C with root file
remollout Moller gen Z2Z2k.root

2. Give an unique name at string foutNm =
Form("RootScript real.root");

3. Load the script RootScript.C

.L analysis/RootScript.C
4. Execute the script

RootScript (“remollout Moller gen 2k.root”)
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Analysis Steps

1. We will then run the script RootScript.C with root file
remollout Moller gen Krypto Z2k.root
2. Give an unique name at string foutNm =

Form("RootScript krypto.root");
3. Load the script RootScript.C

.L analysis/RootScript.C
4. Execute the script

RootScript (“remollout Moller gen Krypto 2k.root”)
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