Simulation Project: Part 2

Dr. Rakitha Beminiwattha
Louisiana Tech University

Goals

e Use simulation output root files of part 1 of the project
e Use RootScript.C as atemplate script and create a root script relevant for

above study
e Use the output of this script to study the effects of slit scattering from

collimator
o We will look at Photons (pid=22) hitting the sensitive detector (det id 47) we created
previously at GDML overview session

Prerequisites

e Files required for the tutorial are available at Hands-On-Remoll in

https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjR
sfB?usp=sharing

e Download the file RootScript.C into ~/softwares/remoll/analysis
e therootfiles remollout Moller gen 2k.root and

remollout Moller gen Krypto Z2k.root
o Both of these files are also available in Hands-On/Rootfiles directory in shared Google Drive
o Make sure these rooffiles are in ~/softwares/remoll/

https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjRsfB?usp=sharing
https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjRsfB?usp=sharing

Root Scripting: Histogram Declarations

RootScript.C is our template script, we will create histograms of hit radius, xy 2D distribution and
source vertex of these hits on Det-47

1. Declare 1D histograms for radius and source vertex

TH1D *r

TH1D *sourceZ

TH1D *rRate //for rate weighted radial distribution
2. Define 2D histograms for XY distribution

TH2D *hXY

TH2D *hXYrate //for rate weighted XY distribution

Root Scripting: Histogram definitions
e Let's define their parameters and create them inside initHisto() routine

r = new THI1D("xr","Detd47 radial distribution;r[mm]",200,0,600);

rRate = new THID("rRate","Det 47 rate weighted
distribution;r[mm]",200,0,600);

hXY = new TH2D ("hXY","2D hit distribution;x [mm];y
[mm]",200,-600,600,200,-600,600);

hXYrate = new THZ2D ("hXYrate","rate weighted 2D hit
ditribution;x [mm];y [mm]",200,-600,600,200,-600,600);

sourceZ = new THID("sourcez","initial vertex for hit ;=z
position [mm]",10000,-5300,8000);

Root Scripting: Proper Cuts

e Let's set the proper cuts to match our analysis, cuts are applied in the

processOne (.. .) routine
o Select only photons

if(hit->at(j) .pid!=22) continue;
o Select hits only on detector id 47
if(hit->at(j) .det != 47) continue;

e Next we fill histograms

Root Scripting: Filling Histograms

e Let's fill these histograms with data from the Tree in at the
processOne (.. .) routine
r->Fill (hit->at(j) .r);
sourcez->Fill (hit->at (j) .vz);
hXY->Fill (hit->at(j) .x,hit->at(3) .vy)
rRate->Fill (hit->at(j) .r, rate);

hXYrate->Fill (hit->at (j) .x,hit->at(j) .y, rate);

Root Scripting: Post Processing

e Scale rate weighted histograms if we have used chain of root files (more than
one root filed linked) in the void scale () routine
rRate->Scale(1l./nFiles) ;

hXYrate->Scale (1l./nFiles);

Make Histograms in Canvases: Create a Canvas

e Inroutine void plot ()
e Let's create a canvas

Double t w = 600;//width px Canvas textid Canvas title
Double t h = 600;//height px //// /
TCanvas *pl = new TCanvas ("TCan sourcez","Source Z

Canvas",w,h);

‘\\\\\\\\\ Canvas size

Format Histogram and Draw on the Canvas

e Use the function: gStyle->SetOptStat ("nemr") ; toformat histogram
stat box information: n-name, e-events, m-mean, r-rms

e Draw the vertex histogram on the p1 Canvas : sourceZ->DrawCopy () ;

e You can save the canvas as an image to formats including pdf or png:
pl->SaveAs ("TCan sourceZ.png") ;

e This command will save the canvas p1 with the histogram source?Z as an
image file.

10

Make Histograms in Canvases: Create a Canvas

e Let's create the second canvas

w = 1000;//width px
Canvas textid Canvas title

h = 1000;//height px / /

TCanvas *p2 = new TCanvas ("TCan rate xy","Radial and XY
hits",w,h);

Make Histograms in Canvases: Divide the Canvas

Let’s create the canvas p2 with multiple pads : p2->Divide (2,2) ;//nx,ny
o Above command creates 2 by 2 = 4 pads in the canvas

Let’s add four histograms into this canvas
p2->cd (1) ;

r->DrawCopy () ;

p2->cd (2) ;

rRate->DrawCopy () ;

p2->cd (3) ;

hXY->DrawCopy () ;

p2->cd (4) ;

hXYrate->DrawCopy () ;

12

Save Output into a Root File for Later access
e Output written in this step can be accessed later in a root file “RootScript.root”
e Inthe routine void writeOutput ()
r->Write();
sourceZ->Write () ;
hXY->Write () ;
rRate->Write () ;

hXYrate->Write () ;

13

Save Output into a Root File for Later access

e Output written in this step can be accessed later in a root file
“RootScript.root”

e This file name is set in the routine void initHisto ()
string foutNm = Form("RootScript.root");
e You can access the saved histograms using the command

root RootScript.root or ./build/reroot RootScript.root

14

Analysis Steps

1. We will first run the script RootScript.C with root file
remollout Moller gen Z2Z2k.root

2. Give an unique name at string foutNm =
Form("RootScript real.root");

3. Load the script RootScript.C

.L analysis/RootScript.C
4. Execute the script

RootScript (“remollout Moller gen 2k.root”)

15

Analysis Steps

1. We will then run the script RootScript.C with root file
remollout Moller gen Krypto Z2k.root
2. Give an unique name at string foutNm =

Form("RootScript krypto.root");
3. Load the script RootScript.C

.L analysis/RootScript.C
4. Execute the script

RootScript (“remollout Moller gen Krypto 2k.root”)

16

