
Simulation Project: Part 2
Dr. Rakitha Beminiwattha
Louisiana Tech University

1

Goals

● Use simulation output root files of part 1 of the project
● Use RootScript.C as a template script and create a root script relevant for

above study
● Use the output of this script to study the effects of slit scattering from

collimator
○ We will look at Photons (pid=22) hitting the sensitive detector (det id 47) we created

previously at GDML overview session

2

Prerequisites

● Files required for the tutorial are available at Hands-On-Remoll in

https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjR
sfB?usp=sharing

● Download the file RootScript.C into ~/softwares/remoll/analysis
● the root files remollout_Moller_gen_2k.root and

remollout_Moller_gen_Krypto_2k.root
○ Both of these files are also available in Hands-On/Rootfiles directory in shared Google Drive
○ Make sure these rootfiles are in ~/softwares/remoll/

3

https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjRsfB?usp=sharing
https://drive.google.com/drive/folders/1Bcoe3hPBwS1MCXiwCdD0ghjgKnkjRsfB?usp=sharing

Root Scripting: Histogram Declarations

RootScript.C is our template script, we will create histograms of hit radius, xy 2D distribution and
source vertex of these hits on Det-47

1. Declare 1D histograms for radius and source vertex

TH1D *r

TH1D *sourceZ

TH1D *rRate //for rate weighted radial distribution

2. Define 2D histograms for XY distribution

TH2D *hXY

TH2D *hXYrate //for rate weighted XY distribution

4

Root Scripting: Histogram definitions
● Let’s define their parameters and create them inside initHisto() routine

 r = new TH1D("r","Det47 radial distribution;r[mm]",200,0,600);

 rRate = new TH1D("rRate","Det 47 rate weighted
distribution;r[mm]",200,0,600);

 hXY = new TH2D("hXY","2D hit distribution;x [mm];y
[mm]",200,-600,600,200,-600,600);

 hXYrate = new TH2D("hXYrate","rate weighted 2D hit
ditribution;x [mm];y [mm]",200,-600,600,200,-600,600);

 sourceZ = new TH1D("sourceZ","initial vertex for hit ;z
position [mm]",10000,-5300,8000);

5

Root Scripting: Proper Cuts

● Let’s set the proper cuts to match our analysis, cuts are applied in the
processOne(...) routine

○ Select only photons

if(hit->at(j).pid!=22) continue;

○ Select hits only on detector id 47

if(hit->at(j).det != 47) continue;

● Next we fill histograms

6

Root Scripting: Filling Histograms

● Let’s fill these histograms with data from the Tree in at the
processOne(...) routine

r->Fill(hit->at(j).r);

sourceZ->Fill(hit->at(j).vz);

hXY->Fill(hit->at(j).x,hit->at(j).y);

rRate->Fill(hit->at(j).r,rate);

hXYrate->Fill(hit->at(j).x,hit->at(j).y,rate);

7

Root Scripting: Post Processing

● Scale rate weighted histograms if we have used chain of root files (more than
one root filed linked) in the void scale() routine

rRate->Scale(1./nFiles);

hXYrate->Scale(1./nFiles);

8

Make Histograms in Canvases: Create a Canvas

● In routine void plot()
● Let’s create a canvas

Double_t w = 600;//width px

Double_t h = 600;//height px

TCanvas *p1 = new TCanvas("TCan_sourceZ","Source Z
Canvas",w,h);

Canvas text id Canvas title

Canvas size

9

Format Histogram and Draw on the Canvas

● Use the function: gStyle->SetOptStat("nemr"); to format histogram
stat box information: n-name, e-events, m-mean, r-rms

● Draw the vertex histogram on the p1 Canvas : sourceZ->DrawCopy();
● You can save the canvas as an image to formats including pdf or png:

p1->SaveAs("TCan_sourceZ.png");
● This command will save the canvas p1 with the histogram sourceZ as an

image file.

10

Make Histograms in Canvases: Create a Canvas

● Let’s create the second canvas

w = 1000;//width px

h = 1000;//height px

TCanvas *p2 = new TCanvas("TCan_rate_xy","Radial and XY
hits",w,h);

Canvas text id Canvas title

Canvas size

11

Make Histograms in Canvases: Divide the Canvas
● Let’s create the canvas p2 with multiple pads : p2->Divide(2,2);//nx,ny

○ Above command creates 2 by 2 = 4 pads in the canvas
● Let’s add four histograms into this canvas

p2->cd(1);

r->DrawCopy();

p2->cd(2);

rRate->DrawCopy();

p2->cd(3);

hXY->DrawCopy();

p2->cd(4);

hXYrate->DrawCopy();
12

Save Output into a Root File for Later access

● Output written in this step can be accessed later in a root file “RootScript.root”
● In the routine void writeOutput()

r->Write();

sourceZ->Write();

hXY->Write();

rRate->Write();

hXYrate->Write();

13

Save Output into a Root File for Later access

● Output written in this step can be accessed later in a root file
“RootScript.root”

● This file name is set in the routine void initHisto()

string foutNm = Form("RootScript.root");

● You can access the saved histograms using the command

root RootScript.root or ./build/reroot RootScript.root

14

Analysis Steps

1. We will first run the script RootScript.C with root file
remollout_Moller_gen_2k.root

2. Give an unique name at string foutNm =
Form("RootScript_real.root");

3. Load the script RootScript.C

.L analysis/RootScript.C

4. Execute the script

RootScript(“remollout_Moller_gen_2k.root”)

15

Analysis Steps

1. We will then run the script RootScript.C with root file
remollout_Moller_gen_Krypto_2k.root

2. Give an unique name at string foutNm =
Form("RootScript_krypto.root");

3. Load the script RootScript.C

.L analysis/RootScript.C

4. Execute the script

RootScript(“remollout_Moller_gen_Krypto_2k.root”)

16

