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Electron Scattering and Parity-Violation
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•Incident beam is longitudinally polarized 
•Change sign of longitudinal polarization 
•Measure fractional rate difference
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APV ∝ Qe
W = 1 − 4 sin2 θWMeasuring ee elastic (Møller) scattering

rotation



The Weak Mixing Angle
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Renormaliza+on scheme defines sin2θW at the 
Z-pole.  
γ-Z mixing and other diagrams are absorbed 
into the coupling constant 
At the Z-pole - measuring proper+es of the SM 
Z0 boson 
Off the Z-pole, low-energy measurements are 
sensi+ve to (new) parity-viola+ng interac+ons

δ(sin2θW) = ± 0.00024 (stat.) ± 0.00013 (syst.) ~ 0.1%
Matches best collider (Z-pole) measurement! 



MOLLER
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parity-violation in e-e- elastic scattering 

APV = 35.6 ppb

δ(QeW) = ± 2.1 % (stat) ± 1.0 % (syst) 
δ(APV) = 0.73 parts per billion

signal rate: 135 GHz 
run time: 8200 hours 
~3x1018 electrons detected



Measuring this small asymmetry
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Rapid (2kHz) helicity reversals

Analog integrate detector current

Place a detector where it sees the Møller 
scattered electron

Form an asymmetry over the helicity reversal
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Measure to 0.01% at 1 kHz, 
repeat for a year straight

Specialized experimental techniques  
• Precise spectrometer to separate signal 
• Low noise electronics 
• Precise beam control and measurement 
• …



High Precision
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Experimental Overview
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Figure of Merit
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highly boosted laboratory frame

Identical particles. 
Measure either forward or backward scattering. Scattered Electron Energy (GeV)
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CM angles 90o-120o 
11 GeV in: 2.75 to 5.5 GeV out 
Lab angles ~9 mrad - 17 mrad

Center of mass Lab

boost



Identical Particles
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Unique concept allows for full azimuthal acceptance (effectively) 
even leaving space for coils but makes for a challenging design

CM angles 60o -120o 
11 GeV in: 2.75 to 8.25 GeV out 
Lab angles ~5 mrad - 17 mrad

Scattered Electron Energy (GeV)
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Since you only need either the forward or the backward scatter, 
accept forward+backward for half the azimuth



Spectrometer Concept
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• Bend scattered particles, separate ee from ep and photons 
• Small angles and high beam power 
• Large energy range (3-8 GeV) 
• Long target

• Two toroidal magnets (Upstream and Downstream) 
• Collimation + “shields” or “blockers” 
• vacuum pipe to take beam to dump

26.5 m target to detector



Radial and Azimuthal Fields
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Radial field component 
vs. radius 
off-center of open sector

Effectively focuses or 
defocusses azimuthally!

Inner and outer edges of toroids have 
significant radial field components

repels electrons 
from coil

“focussing”

attracts electrons 
toward coils

“defocussing”



Magnet Concept
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Main Detector
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Backgrounds (irreducible)
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There are various sources of backgrounds 
arising from scattering in the target that will 
pass through the spectrometer and arrive at 
the detector plane. 

Illustration with each septant a 
different fundamental background

We must deconvolute the signal from the 
background using the segmented detector plane 



Backgrounds (rescattering)
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Target

UST DST

Drift Detector
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Other backgrounds aren’t directly through the acceptance channel, but are 
• from rescattering of the beam as it makes its way through the spectrometer to the dump 
• from off-energy particles in the acceptance that rescatter from edges or surfaces, and go 

on to find the detector

where stuff that hit the detector came from…



Beam Collimation
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Collimator 1

Collimator 2

Collimator 1: long snout, collimates primary 
beam so what remains can go to the dump. 
~3200 W

Collimator 2: wedges define the 
acceptance of the 7 septants



Walls, collars, and lintels supplement the collimation
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collar 
“zero”

Collimator 
1&2

Collimator 4

Lead wall

Collar 1

Collimator 5 
and lintels

GEM 
trackers

Concrete wall

Walls, collars, and lintels supplement the collimation
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More Detectors
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SAMs

pion detectors
Pb absorberGEMS



Simulation Topics

20Kent Paschke - UVa Simulation Workship - Experiment Overview

• Radiation control for equipment (hall electronics) and personnel protection (boundary) 
• Rescattering for control of measurement in main detector (or other detectors) 

• Edges, field imperfections… 
• rare events (e.g. ferromagnetic materials) 

• Radiation estimates for radiation damage in apparatus (coils, o-rings) 
• Maintain signal acceptance/interpretability throughout the final engineering 
• Determining fabrication tolerances 
• Detector optimization/design 
• Physics extraction 

Most everything we do falls in to one of these categories

This ~50M$ project is taking off, and engineering/design topics have our top priority

We’re looking forward to having your help with this work!


