
Solutions to the Heat Equation for
Circular Target Foil Heating by an

Electron Beam for Uniform and
Gaussian Beam Distributions

D. C. Jones
email donald.jones@temple.edu

February 28, 2022

Abstract

Estimates of material heating by an electron beam must often be calculated in the context
of electron scattering experiments. This analysis works through the a solution to the heat
equation for the specific situation of a circular thin foil target heated by an electron beam
source at its center. Solutions for two beam profiles, Gaussian and uniform, are shown. This
is the situation for the thin Fe foil Møller polarimeter target in Hall A at Jefferson Lab, but
these methods can be extended to more complex target geometries and beam distributions
using numerical techniques.

The purpose of this document is to provide a detailed solution to the heat equation for the
specific situation of a circular Fe foil with an electron beam heat source at its center. However,
the methods can be extended to more complex geometries where analytical solutions may not be
possible. This technical note TargetHeating.tex, TargetHeating.pdf and the accompanying code
FeFoilHeating.C can be found in the following Github repository:
https://github.com/jonesdc76/MollerPolarimetry/tree/master/TargetPolarization

1 Solving the Heat Equation for Conditions Specific to the

Hall A Møller Polarimeter

To calculate the heating of the Møller polarimeter iron foil we start with the heat equation. Given
the geometry of the Møller foil where we have a circular10 µm thick foil with a beam heat source
located at the center, we can assume this has no azimuthal or z-dependence and we are left with
only a radial dependence:

ρCp
∂T

∂t
= κ∇2T + ραBflux −

2σε

∆z

(
T 4 − T 4

0

)
. (1)

• T (r, t) is the foil temperature in Kelvin,

1

donald.jones@temple.edu

• κ is the temperature dependent thermal conductivity of Fe which is approximately 0.8 W/(K
cm) at room temperature (see Fig. 1),

• ρ = 7.87 g/cm3 is the density of Fe,

• σ = 5.67× 10−12 W/(K4 cm2) is the Stefan-Boltzmann constant,

• ε is the foil emissivity which depends on the polish and structure of the surface ranging from
0 (perfect polish) to 1 (perfect blackbody). Given the polish of the foil, something like 0.1
can be assumed.

• T0 = 294 K, is the ambient temperature of the target ladder holding the foil at its boundary,

• ∆z = 10 µm is the thickness of the foil,

• α is the collision stopping power for electrons in Fe. It is a function of electron energy
and is 2.043 (MeV cm2)/g=3.273×10−13(J cm2)/g for a 10 GeV electron using ESTAR. The
ESTAR data along with a 5-degree polynomial fit used to calculate α as a function of energy
is shown in Fig. 2. Care should be exercised when extrapolating outside the 1-10 GeV range.

• Cp = 0.45 J/(g K) is the specific heat of Fe and,

• Bflux = d3Ne

dsdt
is the flux density of the beam in e−/(cm2 s).

In principle T and Bflux are functions of position and time. However, we are interested in the
temperature of the steady state which is presumably reached quite rapidly when the beam turns
on. Setting ∂T

∂t
= 0 simplifies Eq. 1. The expected heat load on a 10 µm thick Fe foil in the

electron beam is about 12 mW/µA. If the temperature increase with beam inside the beam flux is
of 30 degrees Celsius or less, over a beam radius of 1 mm, then the radiated energy in this circular
area is 0.13 mW or about 1% of the heat load. In this case, we can safely neglect the radiative
cooling term. If we end up with a temperature increase greater than 30 degrees, then we will have
to revisit this assumption. Under these assumptions, Eq. 1 simplifies to

κ∇2T = −ραBflux (2)

κ

r

∂

∂r

(
r
∂T

∂r

)
= −ραBflux (3)

∂

∂r

(
r
∂T

∂r

)
= −ρα

κ
rBflux. (4)

1.1 Solving for a heating from a Gaussian profile beam spot

The Hall A Møller polarimeter, does not typically take rastered beam, and has an approximately
Gaussian flux profile. We will consider the case of a circular Gaussian profile of 1 σ radius rb.
Therefore, the Gaussian profiled electron flux Bflux from a beam current I in amperes with a radius
of rb becomes

Bflux =
I

1.6× 10−19 (2πr2
b)
e−r

2/2r2b . (5)

Inserting this density profile for the electron beam heat source into Eq. 4 gives

∂

∂r

(
r
∂T

∂r

)
= −γre−r2/2r2b , (6)

2

240 260 280 300 320 340 360 380 400
Temperature (k)

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88K
)

°
T

he
rm

al
 C

on
du

ct
iv

ity
 (

W
/c

m

 / ndf 2χ 07 / 1− 8e

Prob 0.9993

p0 0.01852± 1.289

p1 0.0001166±0.002046 −

p2 07− 1.789e±06 − 1.4e

 / ndf 2χ 07 / 1− 8e

Prob 0.9993

p0 0.01852± 1.289

p1 0.0001166±0.002046 −

p2 07− 1.789e±06 − 1.4e

Fe Thermal Conductivity vs. Temperature

Figure 1: Fe thermal conductivityκ as a function of temperature. Data are from
https://www.efunda.com/materials/elements/TC Table.cfm?Element ID=Fe and are fit to a 2nd
degree polynomial.

where γ ≡ Iρα

1.6×10−19κ(2πr2b)
. Integrating both sides of Eq. 6 w.r.t. r gives

r
∂T

∂r
= r2

bγe
−r2/2r2b + C, (7)

∂T

∂r
=
r2
bγ

r
e−r

2/2r2b +
C

r
(8)

where C is a constant of integration to be determined from boundary conditions in the steady
state. To determine C, the total heat load from the beam is given by Iαρ∆z/1.6 × 10−19 =
16.1∆z W/(µA cm). The heat flow through the boundary is the product of the conductivity κ,
the cross sectional area of the foil along the foil perimeter 2πRfoil∆z and the temperature slope
∂T/∂r, where length units are in cm. The perimeter of the foil at Rfoil is assumed to be kept
fixed at room temperature. The heat flow at the boundary has to equal the beam heat load in the
steady state, so

(κ2πRfoil∆z)
∂T

∂r
|r=Rfoil

≈ −16.1∆z

(
W

µA cm

)
≈ (κ2πRfoil∆z)C

Rfoil

,

where the first term on the left side of Eq. 8) is not included since it is negligible at the boundary
of the foil Rfoil. The negative sign comes from the direction of heat flow towards higher radius

3

0 2 4 6 8 10 12
Electron Energy

1.85

1.9

1.95

2

2.05

/g
)

2
S

to
pp

in
g

P
ow

er
 (

M
eV

 c
m

 / ndf 2χ 06 / 4− 2.563e

Prob 1

p0 0.004025± 1.749

p1 0.01122± 0.2007

p2 0.01033±0.09605 −

p3 0.00443± 0.0287

p4 0.000999±0.005083 −
p5 0.000122± 0.0005207

p6 06− 7.623e±05 −2.844e−
p7 07− 1.908e±07 − 6.402e

Electron Stopping Power for Fe vs Beam Energy (ESTAR Data)

Figure 2: Stopping power for electrons as a function of energy in Fe. Data are from ESTAR and
are fit to a 5-degree polynomial.

making the temperature decrease with increasing r.

C ≈ −16.1

2πκ
= −3.20

(
K

µA

)
,

where the temperature dependent κ for Fe has been used (see Fig. 1). Now to find the temperature
difference between the outside perimeter of the foil at r = Rfoil and some r < Rfoil integrate both
sides from Rfoil to r yielding

∆T =

∫ r

Rfoil

(
r2
bγ

r′
e−r

′2/2r2b +
C

r′

)
dr′. (9)

This can easily be integrated numerically as shown in Figures 3 and 4.

1.2 Solving for heating from a uniform circular distribution

In the case where a beam is rastered, the charge distribution can be considered to be uniform.
Let’s solve for the case of a uniform circular raster pattern of radius rrast centered on the foil. In
this case, the electron flux density B is given by

B =
IΘ(rrast − r)

1.6× 10−19πr2
rast

, (10)

4

0.6− 0.4− 0.2− 0 0.2 0.4 0.6
Radial Distance from Foil Center (cm)

0

2

4

6

8

10

12

14K
)

°
T

 (
∆

Beam Energy: 11.0 GeV

AµBeam Current: 1.0

mµ Radius: 100 σBeam Spot Size 1

Beam Spot Profile: Gaussian

Foil Radius: 0.64 cm

 beam spotσOutside 2

 beam spotσInside 2T> Charge-weighted over Beam Spot∆<

K°12.14

T Profile vs Radial Distance from Foil Center∆Fe Foil

Figure 3: Fe foil ∆T profile from integrating Eq. 9 with beam spot size, and energy given.

where Θ(rrast − r) is the Heaviside function which is unity for r < rrast and zero for r > rrast.
Inserting Eq. 10 into Eq. 4 yields

∂

∂r

(
r
∂T

∂r

)
= −ρα

κ

IΘ(rrast − r)
1.6× 10−19πr2

rast

r (11)

= −γΘ(rrast − r)r, (12)

where γ ≡ ραI
1.602×10−19κπr2rast

. Integrating both sides with respect to r gives

r
∂T

∂r
=

{
−γr2

2
+ C, r < rrast

−γr2rast
2

+ C, r ≥ rrast.

This becomes
∂T

∂r
=

{
−γr2

2r
+ C

r
, r < rrast

−γr2rast
2r

+ C
r
, r ≥ rrast.

Similar to before, the heat flow through the foil thickness at r ≥ rrast has to equal the beam heat
load in the steady state, so let’s solve at r = rrast:

(κ2πrrast∆z)
∂T

∂r
|r=Rfoil

≈ ραI

1.602× 10−19
∆z

(
W

µA cm

)
≈
(
−γr2

rast

2
+ C

)
2πκ∆z.

Solving gives C = 0, so we now have

∂T

∂r
=

{
−γr2

2r
, r < rrast

−γr2rast
2r

, r ≥ rrast.
(13)

5

0.6− 0.4− 0.2− 0 0.2 0.4 0.6
Radial Distance from Foil Center (cm)

294

296

298

300

302

304

306

308K
)

°
F

oi
l T

em
pe

ra
tu

re
 (beam spotσOutside 2

 beam spotσInside 2

Beam Energy: 11.0 GeV

AµBeam Current: 1.0

mµ Radius: 100 σBeam Spot Size 1

Beam Spot Profile: Gaussian

Foil Radius: 0.64 cm

Fe Foil Temperature Profile vs Radial Distance from Foil Center

<T> Charge-weighted over Beam Spot
K°306.14

Figure 4: Fe foil temperature profile from integrating Eq. 9 with beam spot size, and energy given.

Integrating both sides with respect to r in reverse direction from r = Rfoil to r ≤ rrast gives ∆T

∆T =

{
−γr2rast

2

∫ rrast
Rfoil

dr
r
− γ

2

∫ r
rrast

r′dr′, r < rrast

−γr2rast
2

∫ r
Rfoil

dr′

r′
, r ≥ rrast

,

which can be piecewise solved analytically yielding

∆T =

{
γr2rast

2
ln
(
Rfoil

rrast

)
+ γ

4
(r2

rast − r2) , r < rrast

γr2rast
2

ln
(
Rfoil

r

)
, r ≥ rrast

. (14)

Figures 5 and 6 give plots of ∆T and T respectively for a uniformly rastered beam for the param-
eters given on the plots.

6

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
Radial Distance from Foil Center (cm)

0

2

4

6

8

10

K
)

°
T

 (
∆

Beam Energy: 11.0 GeV

AµBeam Current: 1.0

mµBeam Spot Size Radius: 500

Beam Spot Profile: Uniform

Foil Radius: 0.64 cm

Outside beam spot

Inside beam spotT> Charge-weighted over Beam Spot∆<

K°9.00

T Profile vs Radial Distance from Foil Center∆Fe Foil

Figure 5: Fe foil ∆T profile from using Eq. 14 with beam spot size, and energy given.

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
Radial Distance from Foil Center (cm)

294

296

298

300

302

304

K
)

°
F

oi
l T

em
pe

ra
tu

re
 (Outside beam spot

Inside beam spot

Beam Energy: 11.0 GeV

AµBeam Current: 1.0

mµBeam Spot Size Radius: 500

Beam Spot Profile: Uniform

Foil Radius: 0.64 cm

Fe Foil Temperature Profile vs Radial Distance from Foil Center

<T> Charge-weighted over Beam Spot

K°303.00

Figure 6: Fe foil temperature profile from integrating Eq. 14 with beam spot size, and energy
given.

7

2 C++/ROOT Code for Numerically Integrating Eq. 9

The following ROOT macro uses Eq. 9 to calculate the foil heating for a circular Fe foil in a
Gaussian profile electron beam. The latest version of this code is available at

#include "TF1.h"

#include <iostream>

#include "TGraph.h"

#include "TLegend.h"

#include "TAxis.h"

#include "TPad.h"

#include "TCanvas.h"

#include "TStyle.h"

#include "TPaveText.h"

#include "TString.h"

///////////////////

//Donald C. Jones//

//Nov. 2021 //

///////////////////

//

//FeFoilHeating() calculates and graphs the temperature differnce in a thin circular

//

//Fe foil between its edge held at a fixed temperature T0 and inside a circular //

//Gaussian-distributed or uniformly rastered electron beam. //

// //

//Arguments: //

// beam_cur: beam current in Amperes //

// beam_r: 1 sigma beam spot size radius in cm (beam_r^2=sigma_x^2+sigma_y^2) //

// beam_E: beam energy in GeV //

// T0: ambient (Hall) temperature in Kelvin taken as foil boundary temperature //

// foil_r: foil radius in cm (default is 1/2") //

// uniform: uniform charge distribution? Otherwise, Gaussian assumed. //

// //

//Returns: //

//the foil temperature difference in degrees K between T0 at the foil edge and the //

//temperature at the 1-sigma beam radius r_beam. //

//NOTE: it is helpful to recall that for a 2D circular Gaussian distribution the //

// since the width is the quadrature sum of the x and y widths this is not the //

// same as the 1-sigma width of the projected 1D distribution. The projected //

// 1D distribution width will be sqrt(2) smaller than the beam_r, the 2D 1-sigma

//

// width. The volume between r=0 and the n-sigma are as follows (where sigma //

// is the quadrature sum of sigma_x and sigma_y): //

// 1 sigma = 39.35%, 2 sigma = 86.47%, 3 sigma = 98.89%, 4 sigma = 99.97%. //

//

double FeFoilHeating(double beam_cur = 1e-6, double beam_r=15e-3, double beam_E = 11,

double T0 = 294, double foil_r = 0.635, bool uniform = 0){

8

gStyle->SetStatY(0.7);

gStyle->SetStatH(0.2);

gStyle->SetOptFit(1111);

gStyle->SetTitleW(0.9);

bool save_plots = 1;

const double rho = 7.874;//density of Fe

const double sigma = 5.670e-12;//Stefan Boltzman constant W/(cm^2 K^4)

const double Cp = 0.45;//Fe specific heat capacity in J/(g K)

const double echarge = 1.602e-19;//Coulombs per electron

const double PI = 3.1415927;//pi obviously

const double foil_th = 0.001;//foil thickness in cm

//Use ESTAR data to estimate energy loss as a function of electron energy

//--

TCanvas *c = new TCanvas("c","c",0,0,800,600);

double beam_en[10]={1,2,3,4,5,6,7,8,9,10};//beam energy in GeV

double stop_en[10]={1.878,1.928,1.957,1.977,1.993, //collision stopping power

2.006,2.017,2.027,2.035,2.043};//in (MeV cm^2/g) using ESTAR

TGraph *grStop = new TGraph(10,beam_en,stop_en);

grStop->SetTitle("Electron Stopping Power for Fe vs Beam Energy (ESTAR Data)");

grStop->SetMarkerStyle(8);

grStop->Draw("ap");

grStop->GetXaxis()->SetTitle("Electron Energy");

grStop->GetYaxis()->SetTitle("Stopping Power (MeV cm^{2}/g)");

gPad->Update();

TF1 *fStop = new TF1("fStop","pol5",0,1);//use fit to give continuous function

grStop->Fit(fStop);

double alpha = echarge*fStop->Eval(beam_E)*1e6;//Collision stopping power in

(Jcm^2/g)

cout<<"Stopping power "<<alpha<<" (J cm^2/g)"<<endl;

cout<<"Energy deposited in target: "<<alpha*rho*beam_cur/echarge*foil_th<<"

W."<<endl;

if(save_plots)

c->SaveAs("FeStoppingPower.pdf");

//Calculate the energy dependent thermal conductivity of Fe using data either from

//https://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Fe

//or

//https://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html

//--

bool data_efunda = 1;

TCanvas *ct = new TCanvas("ct","ct",0,0,800,600);

double temp[4] = {250,300,350,400};

double cond[4] = {0.865,0.802,0.744,0.695};//www.efunda.com

TGraph *grC = new TGraph(4,temp,cond);

9

grC->SetTitle("Fe Thermal Conductivity vs. Temperature");

grC->SetMarkerStyle(8);

grC->Draw("ap");

grC->GetXaxis()->SetTitle("Temperature (k)");

grC->GetYaxis()->SetTitle("Thermal Conductivity (W/cm K)");

TF1 *fCond = new TF1("fCond","pol2",0,1);

grC->Fit(fCond);

gPad->Update();

if(!data_efunda)//www.engineeringtoolbox.com

fCond = new TF1("fCond","1.13809-0.00111024*x",0,1);

double slope = uniform ? 19.5 : 17;

double guessTemp = T0+slope*beam_cur/1e-6;//starting guess for final foil

temperature

double kappa = fCond->Eval(guessTemp);

cout<<"Conductivity at "<<guessTemp<<" K is "<<kappa<<endl;

if(save_plots)

ct->SaveAs("FeThermalCond.pdf");

//Integral of f(r) gives delta T. Create the integrand f(r)

//--

double gam = beam_cur/echarge*rho*alpha/kappa/PI/pow(beam_r,2)/(uniform ? 1.0 :

2.0);

double C = -beam_cur/echarge*alpha*rho/2.0/PI/kappa;

TF1 *f = new TF1("f",Form("%e/x*exp(-x*x/%e)+%e/x",

beam_r*beam_r*gam,2*beam_r*beam_r,C),0,foil_r);

//Improve thermal conductivity estimate using the calculated temperature.

//Temperature at 1.3*beam_r is a good estimate of the average temperature

//weighted by a Gaussian beam spot charge distribution. For a uniform distribution

//0.7*beam_r is a good estimate.

//---

double r_est = (uniform ? 0.7 : 1.3)*beam_r;

if(uniform)

guessTemp =

gam*pow(beam_r,2)/2.0*log(foil_r/beam_r)+gam/4*(pow(beam_r,2)-pow(r_est,2))+T0;

else

guessTemp = f->Integral(foil_r, r_est)+T0;

kappa = fCond->Eval(guessTemp);

gam = beam_cur/echarge*rho*alpha/kappa/PI/pow(beam_r,2)/(uniform ? 1.0 : 2.0);

C = -beam_cur/echarge*alpha*rho/2.0/PI/kappa;

cout<<"Conductivity re-calculated at "<<guessTemp<<" K is "<<kappa<<endl;

f = new

TF1("f",Form("%e/x*exp(-x*x/%e)+%e/x",beam_r*beam_r*gam,2*beam_r*beam_r,C),0,foil_r);

10

//Graph resulting temperature profile by integrating f(r)dr. Make points red inside

//beam spot radius (2 sigma if Gaussian).

//---

const int N=1000;

double r[N], T[N], dT[N],ri[N],Ti[N], dTi[N];

int n=0, ni=0;

double rp = foil_r;

double red_zone = uniform ? beam_r : 2*beam_r;

for(int i=0;i<N/2;++i){

r[i]=rp;

if(uniform){

if(rp<red_zone)

dT[i] = gam*pow(beam_r,2)/2.0*log(foil_r/beam_r)+gam/4.0*(pow(beam_r,2)-pow(rp,2));

else

dT[i] = gam*pow(beam_r,2)/2.0*log(foil_r/rp);

}else{

dT[i] = f->Integral(foil_r,rp);

}

T[i] = dT[i]+T0;

if(rp<red_zone){

ri[ni]=rp;

Ti[ni]=T[i];

dTi[ni]=dT[i];

++ni;

}

rp*=0.95;

++n;

if(rp<0.00001)break;

}

for(int i=0;i<n;++i){

r[i+n]=-r[n-i-1];

dT[i+n] = dT[n-i-1];

T[i+n] = T[n-i-1];

}

for(int i=0;i<ni;++i){

ri[i+ni]=-ri[ni-i-1];

dTi[i+ni] = dTi[ni-i-1];

Ti[i+ni] = Ti[ni-i-1];

}

TCanvas *c1 = new TCanvas("c1","c1",0,0,800,600);

TGraph *grdT = new TGraph(2*n,r,dT);

grdT->SetMarkerStyle(8);

grdT->SetLineWidth(6);

grdT->SetMarkerSize(0.3);

grdT->Draw("acp");

grdT->SetTitle(Form("Fe Foil #DeltaT Profile vs Radial Distance from Foil Center"));

grdT->GetXaxis()->SetTitle("Radial Distance from Foil Center (cm)");

grdT->GetYaxis()->SetTitle("#DeltaT (K)");

TGraph *gridT = new TGraph(2*ni,ri,dTi);

11

gridT->SetMarkerStyle(8);

gridT->SetMarkerColor(kRed);

gridT->SetLineColor(kRed);

gridT->SetLineWidth(6);

gridT->SetMarkerSize(0.4);

gridT->Draw("samep");

TPaveText *pt = new TPaveText(0.61,0.35,0.899,0.7,"ndc");

pt->SetFillColor(0);

pt->SetShadowColor(0);

pt->SetBorderSize(0);

pt->AddText(Form("Beam Energy: %0.1f GeV",beam_E));

pt->AddText(Form("Beam Current: %0.1f #muA", beam_cur*1e6));

TString str = Form("Beam Spot Size 1#sigma Radius: %0.1f #mum",beam_r*1e4);

if(uniform)

str = Form("Beam Spot Size Radius: %0.1f #mum",beam_r*1e4);

pt->AddText(str.Data());

pt->AddText((char*)(uniform ? "Beam Spot Profile: Uniform" : "Beam Spot Profile:

Gaussian"));

pt->AddText(Form("Foil Radius: %0.2f cm",foil_r));

pt->Draw();

TLegend *lg = new TLegend(0.62,0.76,0.89,0.89);

if(uniform){

lg->AddEntry(grdT,"Outside beam spot","lp");

lg->AddEntry(gridT,"Inside beam spot","lp");

}else{

lg->AddEntry(grdT,"Outside 2#sigma beam spot","lp");

lg->AddEntry(gridT,"Inside 2#sigma beam spot","lp");

}

lg->Draw();

TCanvas *c2 = new TCanvas("c2","c2",0,0,800,600);

TGraph *gr = new TGraph(2*n,r,T);

gr->SetMarkerStyle(8);

gr->SetLineWidth(6);

gr->SetMarkerSize(0.3);

gr->Draw("acp");

gr->SetTitle(Form("Fe Foil Temperature Profile vs Radial Distance from Foil

Center"));

gr->GetYaxis()->SetTitle("Foil Temperature (K)");

gr->GetXaxis()->SetTitle("Radial Distance from Foil Center (cm)");

gr->GetYaxis()->SetRangeUser(T0,T0+grdT->GetYaxis()->GetXmax());

TGraph *gri = new TGraph(2*ni,ri,Ti);

gri->SetMarkerStyle(8);

gri->SetMarkerColor(kRed);

gri->SetLineColor(kRed);

gri->SetLineWidth(2);

gri->SetMarkerSize(0.4);

gri->Draw("samecp");

lg->Draw();

pt->Draw();

12

//Integrate f(r) weighted by the beam charge distribution to find the average delta

T

//---

gStyle->SetOptFit(0);

TF1 *fGaus = new TF1("fGaus","[0]*exp(-x*x/(2*[1]*[1]))+[2]",-2*beam_r,2*beam_r);

fGaus->SetParameters((guessTemp-T0)/2.,2*beam_r,T0+(guessTemp-T0)/2.);

cout<<(guessTemp-T0)/2.<<endl;

fGaus->SetLineWidth(2);

fGaus->SetLineColor(kRed);

gr->Fit(fGaus,"r");

if(uniform){

fGaus->SetRange(-beam_r,beam_r);

//fGaus->FixParameter(0,fGaus->GetParameter(0));

fGaus->FixParameter(2,fGaus->GetParameter(2));

gr->Fit(fGaus,"r");

}

TString fstr = Form("x*exp(-x*x/2./%e)/%e",beam_r*beam_r,beam_r*beam_r);

if(uniform)fstr = Form("2*x/%e",beam_r*beam_r);

TString func = Form("(%e*exp(-x*x/(2*%e))+%e)*%s",

fGaus->GetParameter(0),pow(fGaus->GetParameter(1),2),

fGaus->GetParameter(2), fstr.Data());

TF1 *fAvgT = new TF1("fAvgT",func.Data(),0,1);

fAvgT->SetNpx(1000);

//fAvgT->Draw();

if(uniform)

cout<<"dT at 0.7 beam radius is "<<fGaus->Eval(beam_r*0.7)<<endl;

else

cout<<"dT at 1.3 sigma is "<<f->Integral(foil_r,beam_r*1.3)<<endl;

//Return average temperature, weighted by the beam spot charge distribution.

//---

c1->SetGrid();

c1->cd();

double avg = fAvgT->Integral(0, (uniform ? 1.0 : 10.0) * beam_r);

TPaveText *pt1 = new TPaveText(0.12,0.74,0.48,0.82,"ndc");

pt1->SetFillColor(0);

pt1->SetShadowColor(0);

//pt1->SetBorderSize(0);

pt1->SetTextColor(kRed);

pt1->AddText(Form("<#DeltaT> Charge-weighted over Beam Spot"));

pt1->AddText(Form("%0.2f K",avg-T0));

pt1->Draw();

gPad->Update();

if(save_plots)

c1->SaveAs(Form("FeFoilHeatingdT%s.pdf",(char*)(uniform ? "Uniform":"")));

c2->SetGrid();

c2->cd();

13

TPaveText *pt2 = new TPaveText(0.12,0.74,0.48,0.82,"ndc");

pt2->SetFillColor(0);

pt2->SetShadowColor(0);

//pt2->SetBorderSize(0);

pt2->SetTextColor(kRed);

pt2->AddText(Form("<T> Charge-weighted over Beam Spot"));

pt2->AddText(Form("%0.2f K",avg));

pt2->Draw();

if(save_plots)

c2->SaveAs(Form("FeFoilHeatingT%s.pdf",(char*)(uniform ? "Uniform":"")));

cout<<"Total correction to magnetization for Fe: "<<-0.0238*(avg-T0)<<"

emu/g"<<endl;

return avg;

}

14

	Solving the Heat Equation for Conditions Specific to the Hall A Møller Polarimeter
	Solving for a heating from a Gaussian profile beam spot
	Solving for heating from a uniform circular distribution

	C++/ROOT Code for Numerically Integrating Eq. 9

