Optics Group Update

Group member: Kate Evans, Lauren Carver, David Armstrong, Wouter Deconinck, Chandan Ghosh, Krishna Kumar

Hanjie Liu 12/17/2021

- 1. Overview of the optics projects
- 2. Current progress
- 3. Following plans

2

Optics study projects

1. Direct impact on the weak charge extraction:

$$< A_{PV} > = \frac{\int A_{PV} \sigma(\theta) \epsilon}{\int \sigma(\theta) \epsilon}$$

$$A_{PV} =$$

• Acceptance function • Kinematic factor

Experience from the PREX/CREX experiments: Tweak the MC so that the MC distribution matches the data distribution (ideally both at the main detector/tracking detector and at the target)

Need an optics map for data projection from the tracking detector to target

- Sieve collimator
- multi foil carbon targets
- Multiple beam energies

O Design a sieve pattern • Target foil position

• Beam energies 3

Optics study projects

2. Systematic measurements and check

- 1). e-p elastic background
- 2). Moller double counting events percentage

• e-p elastic background estimation vs. current • Moller double counting events vs. current • A proper beam current to perform the measurement

3). Edge scattering, detectors alignment, other backgrounds Insert a blocker in front of collimator 1 and 2 to check

direct counting mode measurement using the production hydrogen target with 11 GeV beam

Blocker thickness \bigcirc • Blocker inner radius

Acceptance functions (MC)

• Total acceptance at target

theta acceptance

0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.025 tg.th(rad) 0.005 0.01 0.015 0.02 0

momentum acceptance

acceptance

Acceptance functions (MC)

• Theta acceptance for each ring

ring 3 theta acceptance

ring 5 theta acceptance

ring 2 theta acceptance

ring 6 theta acceptance

tg.th(rad)

Acceptance functions (MC)

Theta acceptance for each sector at ring 5

Things learned:

- 1. Two dimensional acceptance functions (or even 3D when considering ϕ)
- 2. Difference rings have different acceptance functions
- 3. Difference segments have different acceptance functions

ns (or even 3D when considering ϕ) tance functions cceptance functions

Moller double counting

back to back

Moller double counting

1. Simulation estimate about 7% of moller events are double counted

both moller electrons pass through the collimator 2

If all GEMs rotate together, only able to measure some of the double moller electrons at the GEMs

gem_x

500

-500

Moller double counting

Impact of double counting events

Shouldn't affect the central value of the asymmetry, but will change the statistical uncertainty: 1.

measured event counts: $N_m = N_r + N_{2trk} - -$

$$\delta_s^r / \delta_s^m = \sqrt{\frac{N_m}{N_r}} = \sqrt{\frac{N_r + N_{2trk}}{N_r}} = \sqrt{1 + N_{2trk}/N_r} \sim 1.03 \text{ if } N_{2trk}/N_r = 7\%$$

So,

Need to confirm the percentage of double counting events in counting mode runs.

$$\frac{---\delta_s^m}{\delta_s^r} = 1/\sqrt{N_m}$$

Sieve and Blocker geometry

• Sieve: optics map

Blocker: edge scattering and other backgrounds \bullet

11

Ongoing projects

- 1. simulation
- 3. Blocker inner radius study: fulfill the blocker function while minimizing the total power deposited
- 4. Determine positioning tolerances on the Blocker and Sieve

Prepare a software for optics map fitting and get a preliminary optics map from

2. This tool will also help the sieve pattern design and determine the optics kinematics

Check the validity of the two track events

1. Angle smearing of the multi-scattering from the target thickness ~ 0.4 mrad

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/z}$$

- 2. "Cut flow" in remoll:
- carbon, moller, 5*5 raster --2.4%
- LH2, moller, 0*0 raster, no generator msc, no geant4 msc --2.3%(no generator msc: set "fApplyMultScatt = false" in "<u>remollGenMoller.cc</u>") (no geant4 msc: "/process/inactivate msc" to the macro) • LH2, moller, 5*5 raster, no generator msc, no geant4 msc ---4.1%• LH2, moller, 5*5 raster, no geant 4 msc ---4.8%

- LH2, moller, 5*5 raster --6.9%
- LH2, moller, 0*0 raster, no generator msc, no geant4 msc, eIoni, eBrem, compt — 1e-4

—> having 6% two tracks events seem real

```
\overline{X_0} \left[ 1 + 0.038 \ln(x/X_0) \right]
```