Shower-max, Main Detector cabling, Quartz Irradiation Tests

Dustin McNulty – Idaho State University

Outline

- Shower-max update
	- -Subsystem review
	- -Schedule timeline and budget
	- $-$ Recent design updates and preparations for 60% Design Review
	- -Summary and future work
- Detector Cabling
	- -Overview: cabling infrastructure
	- $-$ Patch panels and cable routing
	- -Main detector barrel 1/28 segment wiring (initial ideas)
	- -Summary and future work
- Quartz Irradiation Testing
	- -Overview:
	- -Recent Tests: details and data
	- -Summary and future tests

Shower-max Description

2.04.03 **Shower Max Detector** Design, Procurement, Assembly, and Test of the Shower-Max detector system. It is composed of an array interleaved layers of quartz radiatiors and thin tungsten sheets making up an EM shower detector system.

- Provides additional measurement of Ring-5 integrated flux
- Weights flux by energy \Rightarrow less sensitive to low energy and hadronic backgrounds
- Will also operate in tracking mode to give additional handle on background pion identification
- Will have good resolution over full energy range ($\leq 25\%$), radiation hard with long term stability and good linearity

Shower-max: Detector Concept and Materials

- Detector concept uses a layered "stack" of tungsten and fused silica (quartz) to induce EM showering and produce Cherenkov light
	- "Baseline" design developed using GEANT4 optical MC simulation:
		- Ø Design uses a **4-layer "stack"** with **8 mm tungsten** and **10 (or 6) mm quartz** pieces
		- Ø Cherenkov light directed to **3 inch PMT** using **aircore, aluminum light guide**

Materials:

- Aluminum chassis
- Light guides are aluminum specular reflectors (Anolux Miro-silver 27)
- High purity tungsten and quartz
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0 ; Molière radius ~ 1.1 cm

e-

Shower-max: Past Prototyping and Testbeam

Prototypes constructed in 2018: both Full-scale and Benchmarking versions with two different "stack" configurations:

- 8 mm thick tungsten and 10 mm thick quartz (1A)
- 8 mm thick tungsten and 6 mm thick quartz (1B) 1st-pass engineered design concept vetted
- SLAC testbeam T-577 run: Dec 6 12, 2018
- Exposed prototypes to 3, 5.5, and 8 GeV electrons
- Validated our optical Monte Carlo with benchmarking prototype

htemp --Stack design validated: number of 350 Single electron eyents: 1A Full-scale Entries layers/thicknesses; yields and 283.7 Mean 5.5 GeV 65.73 **Std Dev** resolutions match G4 predictions 300 ~280 PEs/electron 250 47.9 $\frac{47.5}{283}$ = 17% resolution • Prototype beam performance Mis-200 sufficient for MOLLER and 2nd identified 0-electron pass mechanical design Mis-identified 150 events 2-electron events improvements underway 100 50 200 300 400 500 600 700 800 100

Full-scale prototype: 12 cm x 25 cm active area

5202

(PEs)

• Light guide construction techniques developed

- Year-1: includes minor design tweaks, optical and mechanical, based on initial SLAC testbeam results; construction of a "production-level" prototype and second beamtest at FNAL in late 2021
- Year-2: design finalized and reviewed before planned large equipment purchases
- Year-3: construction/assembly and testing of all 28 production + 7 spare modules
- Year-4: shower-max modules delivered to Jefferson Lab. Note that shower-max *stack layers* will need to be disassembled for transport and reassembled at JLab

WBS Activity Schedule

Equipment & Materials Budget for WBS 2.04.03 Shower Max Detector

- Large cost items, requiring formal review before purchase, are high-lighted
- FY20 costs have been increased by 3% per year to account for expenditures in FY22. The average equipment and material cost per module is \$14K (FY22 \$)

Shower-max Design Updates

- Beefed up chassis cross-strut supports
- Welds are no longer used on the outer supports, instead use a U-channel cross-strut support with square mounting plate
- Active area 16 cm x 26.5 cm
- 6 mm thick quartz and 8 mm thick tungsten

Two piece LG design

MOLLER Collaboration Meeting June 2021 10

Shower-max Design Updates

• **Note**: precise z-location and detector tile size and radial position not frozen yet

Shower-max Summary and future work

- Shower-max needs a testbeam somewhere, but can use cosmic-ray test stand for muon beam and connect measurements to the 2018 SLAC testbeam results using Qsim (optical G4 simulator)
- Shower-max z-location and tiling will be 'frozen' within weeks SM position based on the 'freezing' of ring 5
- We are preparing for the preliminary design review at end of Aug 2021:

--We are ready to make final adjustments to radiator size, chassis, and lightguide drawings for prototyping --Gravity stress tests on the chassis for various ring positions are underway. The chassis appears to work well and may be a bit over-engineered (preliminary). We're looking primarily at deformation/deflections

- Waiting for engineered design of outer support (super) structure for finalizing the new outer strut mounting brackets
- New student, Sudip Bhattarai, is/has learned remoll and will perform radiation dose simulation for showermax quartz layers (and SM PMT location) – plan to complete this summer
- Devising plans for the stack assembly procedure and how to both provide spacing between layers and protect the quartz from scratches: use wrappings or engineer some mechanical way (important for SM)

Detector Cabling

Jefferson Lab

Signal breaks/patch panels

Integration mode signals

--Two patch panels for 400 det channels: one near detectors and other in US hut

If pre-amp is integrated into PMT enclosure (for main dets):

--25 m long, 9 ch high density twinax cable from each 1/28 segment patch panel to patch panels on floor near the detectors --then use 100 m cables from here to US hut patch panels (RG-108 twinax)

--15 m cable from US hut patch panel to integrating ADC (twinax)

Counting mode signals

--Two patch panels for 302 det channels: one near detectors? and other in US bunker

*The near detector PP needs to be close to the fast amplifiers

--25 m long, 9 ch high density coax cable from each 1/28 segment patch panel to the patch panel on floor near the detectors and fast amps* --then use 100 m cables (RG58) between fast amps and US hut patch panels(?) --15 m cable from US hut patch panel to flash ADC (RG-58)

1/28 Segment Patch Panel

There are 8 detectors per segment

Each segment's patch panel is essentially an aluminum angle bracket with 4 high density connectors for passing signals

Patch panels are installed on alternating, up- and downstream faces

LV 32 ch ribbon cable connector in process of being replaced with larger connector for 18 AWG wires

1 HV cable 2 coax signal cables 4 LV and control wires Each det requires:

MOLLER Collaboration Meeting June 2021 15

High Density connectors (candidates)

Twinax: (smithsinterconnect.com)

Box Mount Receptacle Pin Insert 25-8 PT* to 8 R/A **Twinax Cables to Open Lead**

Contact

Test

Jetterson Lab

Coax: (LEMO 5B/5S series)

 650 MAX \perp

 -100 MAX

HV: (ges-highvoltage.com)

Type M915/1E 8(+1) Pole 12 kVDC

More views

MOLLER Collaboration Meeting June 2021 18 18

More Views

Front-flush segment

MOLLER Collaboration Meeting June 2021 19 19

- We at preliminary idea stage and invite those interested to attend meetings (fort-nightly on Tues 3pm Eastern)
- There are many details still evolving: keep-out areas and potential interferences that are not shown in these drawings
	- --Multi-level scaffolding around the main detector barrel that can move in and out
	- --A large robot arm centered at the z-location of the barrel just on either side: beam-right or beam-left
- Need to find HD connectors we can purchase and build a patch panel prototype (and eventually test on bench with a parity setup, such as our PMT non-linearity system)
- A suitable and available HD coax connector has not been found yet; we are looking into LV now
- Next steps are to start developing outer barrel HD cable routing and strain-relief mechanics
- Note that the 15 m length of cables (from detector to floor PP) currently in the infrastructure budget will need to be longer $(\sim 2x \text{ longer})$.

Quartz Irradiation Tests

- Goal: quantify light transmission losses in detector radiators due to damage from anticipated levels of radiation dose: 70 Mrad and 170 Mrad peak doses for rings 5 and 2, repectively
- Several candidate artificial fused silica (quartz) samples chosen for testing: from Corning, Ohara, Heraeus, and Isuzu
- Irradiations conducted at the Idaho Accelerator Center using 8 MeV pulsed electron beam, ~45 mA peak current, ~ 0.5 us pulse width at 200 Hz repetition rate
- Dose depositions quantified through G4 simulation benchmarked to beam dosimetry measurements
- Light transmission measurement apparatus uses UV-Vis light source and USB spectrometer

MOLLER Collaboration Meeting June 2021 21 Transmission measurement apparatus and the set of the Idaho Accelerator Center

Corning/Ohara samples: 2 cm diameter, 5 cm long cylinder

Recent Irradiations (beam and sample setup)

- Very preliminary results from May 19, 2021 quartz irradiation run at Idaho Accel. Center (Next run this Friday)
- Used 25 MeV machine 0 deg port with: 8 MeV peak energy, 45 mA peak current, 700 ns pulse width and 200 Hz rep rate. Samples exposed for 2.5, 12.5, 32.5, 52.5, 72.5 minutes total; transmission measured after each exposure
- Corning (UVHGrade-F and Eximer) and Ohara (SK-1300) samples: 2 cm diameter by 5 cm long; polished on flat ends only Samples are 50 cm from beam exit window

**MS Thesis Project for Justin Gahley

Longpass filter dose test

Jefferson Lab

MOLLER Collaboration Meeting June 2021 22

Dose and beamspot measurements for G4 simulation

OSL dosimeter array

OSLs read using microStar

Glass slide

Results from recent measurements: Corning and Ohara

Jefferson Lab

- Light source drift and measurement reproducibility errors are each at $\sim 0.1\%$ level
- New apparatus (static arrangement) has greatly reduced repeatability systematics! However, dose estimates are currently at 20 % level (we are focused on reducing this)
- Corning sample transmission losses both fairly similar; at higher doses (~100 Mrad) Ohara SK-1300 was best and at lower doses (~10 Mrad) Corning is much better
- Edmund Optics 2" longpass filter did not show any signs of losses up to the max tested which was \sim 10 Mrad $(\sim$ 3 Mrad peak/5x5mm 2)
- The G4 dose simulation is benchmarked to the OSL measurements and beamspot size and divergence at the sample; we are refining simulation to give more information (to get dose depth profiles, etc.)
- Next irradiation run is this Friday; we plan to perform a more detailed accounting of the beam setup and monitor drifts with dosimetry measurements before and after each exposure. We will test 1 cm thick Heraeus, Corning, and Ohara samples and the 1 mm thick Isuzu glass

Appendix – backup slides

MOLLER Collaboration Meeting June 2021 **26** 26

Requirements on Shower-max

Requirements Table from MOLLER-NSF CDR

- Shower-max required to ~match flux acceptance of Ring-5 but with a 3:1 reduction in azimuthal segmentation
- Quartz elements optically polished with stringent geometrical tolerances for TIR considerations
- Tungsten is high purity (99.95%) with dimensional tolerances of ± 0.005 inch
- Detector resolution for single-electron response at least 25% to avoid excessive error inflation
- Optical detector elements must be sufficiently radiation-hard to allow Shower-max to preform as required for the duration of the experiment

Quartz optical G4 properties benchmarked at MAMI: Glisur ground polish parameter ~ 0.981

MAMI testbeam with PREX detector

- Stack configuration MC study:
- Stack thicknesses all same (7.2 X_0)
- \div 2, 5, and 8 GeV incident electrons
- ❖ PE dists generated using tuned polish parameter and 60% LG reflectivity

Conclusion:

4-layer gives comparable performance to 10-layer (and is easier and cheaper to build)

