New geometry with shielding in the beam generator

The MOLLER Project Measurement Of a Lepton Lepton Electroweak Reaction

Elham Gorgannejad

Dr. Wouter Deconinck

April 9th, 2021

The origin location of all the secondaries anywhere for 55,000,000 events

(26 cm concrete and upstream Lead)

Beam

sqrt(hit.vx**2+hit.vy**2):hit.vz

T->Draw("sqrt(hit.vx**2+hit.vy**2):hit.vz>>h1(100,23800,26000,100,600,2200)")

sqrt(hit.vx**2+hit.vy**2):hit.vz

sqrt(hit.vx**2+hit.vy**2):hit.vz

sqrt(hit.vx**2+hit.vy**2):hit.vz {hit.det==8001 && (hit.pid==11 || hit.pid==-11 || hit.pid==211 || hit.pid==-211 || hit.pid==-13 || hit.pid==-13)}

Comparison of rates at the Lucite for 5,000,000 events (Low energy particles, hit.p<2*MeV)

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photons from electrons	Rate of photons from pions	Pi/e
Concrete and Lead at 16cm	$(1.12 \pm 0.04) \times 10^{-4}$	$(7.93 \pm 0.30) \times 10^{-7}$	0.71%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) \times 10^{-5}$	3.85%
Concrete and Lead at 21cm	$(7.88 \pm 0.32) \times 10^{-5}$	$(6.95 \pm 0.28) imes 10^{-7}$	0.88%	$(1.55 \pm 0.02) imes 10^{-3}$	$(7.46 \pm 0.03) \times 10^{-5}$	4.81%
Concrete and Lead at 26cm	$(6.10 \pm 0.38) imes 10^{-5}$	$(7.30 \pm 0.29) \times 10^{-7}$	1.20%	$(1.43 \pm 0.03) \times 10^{-3}$	$(7.43 \pm 0.03) \times 10^{-5}$	5.20%
Concrete and Lead at 30cm	$(6.03 \pm 0.90) imes 10^{-5}$	$(7.72 \pm 0.30) imes 10^{-7}$	1.28%	$(1.36 \pm 0.02) \times 10^{-3}$	$(7.34 \pm 0.03) \times 10^{-5}$	5.40%
Concrete and Lead at 35cm	$(4.56 \pm 0.21) imes 10^{-5}$	$(7.89 \pm 0.31) imes 10^{-7}$	1.73%	$(1.24 \pm 0.02) \times 10^{-3}$	$(7.89 \pm 0.03) \times 10^{-5}$	6.36%

Beam generator

55M events

Concrete and	$(2.05 \pm 0.13) imes 10^{-3}$		$(1.023 \pm 0.001) imes 10^{-1}$	
Lead at 26cm				

500M events (Raj's results)

`	• •			
Concrete and	$(5.48 \pm 0.22) imes 10^{-3}$		$(1.99 \pm 0.01) imes 10^{-1}$	
Lead at 26cm				

7

Comparison of rates at the Lucite for 5,000,000 events (High energy particles, hit.p>2*MeV)

Rates GH z/µ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photons from electrons	Rate of photons from pions	Pi/e
Concrete and Lead at 16cm	$(4.89 \pm 0.28) \times 10^{-5}$	$(4.63 \pm 0.08) imes 10^{-6}$	9.47%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Concrete and Lead at 21cm	$(2.37 \pm 0.19) \times 10^{-5}$	$(4.69 \pm 0.08) \times 10^{-6}$	19.79%	$(1.55 \pm 0.02) imes 10^{-3}$	$(7.46 \pm 0.03) imes 10^{-5}$	4.81%
Concrete and Lead at 26cm	$(1.69 \pm 0.12) \times 10^{-5}$	$(4.70 \pm 0.08) \times 10^{-6}$	27.81%	$(1.43 \pm 0.03) \times 10^{-3}$	$(7.43 \pm 0.03) imes 10^{-5}$	5.20%
Concrete and Lead at 30cm	$(1.76 \pm 0.16) \times 10^{-5}$	$(4.66 \pm 0.08) imes 10^{-6}$	26.48%	$(1.36 \pm 0.02) \times 10^{-3}$	$(7.34 \pm 0.03) imes 10^{-5}$	5.40%
Concrete and Lead at 35cm	$(1.09 \pm 0.09) \times 10^{-5}$	$(4.81 \pm 0.08) imes 10^{-6}$	44.13%	$(1.24 \pm 0.02) imes 10^{-3}$	$(7.89 \pm 0.03) imes 10^{-5}$	6.36%

Beam generator

55M events

Concrete and Lead at 26cm	$(1.30 \pm 0.14) \times 10^{-3}$			$(1.023\pm 0.001)\times 10^{-1}$			
500M events (Raj's results)							
Concrete and Lead at 26cm	$(4.19 \pm 0.19) \times 10^{-3}$			$(1.99 \pm 0.01) imes 10^{-1}$		8	

Calculating uncertainties

Rate from the beam generator (9 groups of 5M events) $(1.60 \pm 0.38) \times 10^{-3}$ $(1.78 \pm 0.40) \times 10^{-3}$ $(2.14 \pm 0.44) \times 10^{-3}$ $(2.05\pm 0.43)\times 10^{-3}$ $(3.30 \pm 0.54) \times 10^{-3}$ $(1.87\pm 0.41)\times 10^{-3}$ $(2.32\pm 0.45)\times 10^{-3}$ $(1.78\pm 0.40)\times 10^{-3}$ $(2.05\pm 0.43)\times 10^{-3}$ RMS= 2.151245117 RMS/sqrt(9) = 0.717081706

Rate from the beam generator

Total rate from 45M events: $(1.89 \pm 0.13) \times 10^{-3}$

In electrons and pions generation,

Rate/ 85*e9*14*(number of simulations=50) = Rate/5.95e13

```
T->Draw("1","(rate/5.95e13)*(hit.det==8001 && hit.p<2*MeV && (hit.pid==11 || hit.pid==-11 || hit.pid==211 || hit.pid==211 || hit.pid==-13))")
```

```
T->Draw("1","(rate/5.95e13)*(hit.det==8000)")
```

In the beam generation, the "weight" for each event (stored in the "rate" variable) is $85e-6\mu A / 1.6e-19 / 100,000$ (the number of events in one simulation) =5.31e9 And then normalize it:

```
5.31e9 /85*14*e9*(number of the simulations=500) = 8.9e-6
```

T->Draw("1","8.9e-6*(hit.det==8001 && hit.p<2*MeV && (hit.pid==11 || hit.pid==-11 || hit.pid==211 || hit.pid==-211 || hit.pid==-13))") T->Draw("1","8.9e-6*(hit.det==8000)")

Calculating "rate" variable

In electrons and pions generation,

Rate/ 85*e9*14*(number of simulations=50) = Rate/5.95e13

In the beam generation, the "weight" for each event (stored in the "rate" variable) is $85e-6\mu A/1.6e-19/100,000$ (the number of events in one simulation) =5.31e9 And then normalize it:

5.31e9 /85*14*e9*(number of the simulations=500) = 8.9e-6

