MOLLER Pion Detector Design: Progress Update

Modification of the Showermax wall thickness and the Lead donut support thickness for the new geometry with shielding in the Moller and Pion generator

The MOLLER Project Measurement Of a Lepton Lepton Electroweak Reaction

Elham Gorgannejad

Dr. Wouter Deconinck

March 26th, 2021

Comparison of hits at the Lucite plane for 5,000,000 events

(without shielding)

1200_C

(with downstream shielding)

1200_C h Entries Mean x 2.487e+04 Mean y Std Dev x 8.611 Std Dev y 31.13 -25 -20

(with inner radial shielding)

Changing the radial and longitudinal thickness of Concrete and Lead

The origin location of all the secondaries anywhere for 5,000,000 events

Moller

Pion

sqrt(hit.vx**2+hit.vy**2):hit.vz

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Concrete and Lead at 16cm	$(1.12 \pm 0.04) \times 10^{-4}$	$(7.93 \pm 0.30) imes 10^{-7}$	0.71%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) \times 10^{-5}$	3.85%
Concrete and Lead at 21cm	$(7.88 \pm 0.32) \times 10^{-5}$	$(6.95 \pm 0.28) imes 10^{-7}$	0.88%	$(1.55 \pm 0.02) \times 10^{-3}$	$(7.46 \pm 0.03) \times 10^{-5}$	4.81%
Concrete and Lead at 26cm	$(6.10 \pm 0.38) imes 10^{-5}$	$(7.30 \pm 0.29) \times 10^{-7}$	1.20%	$(1.43 \pm 0.03) \times 10^{-3}$	$(7.43 \pm 0.03) \times 10^{-5}$	5.20%
Concrete and Lead at 30cm	$(6.03 \pm 0.90) imes 10^{-5}$	$(7.72 \pm 0.30) \times 10^{-7}$	1.28%	$(1.36 \pm 0.02) \times 10^{-3}$	$(7.34 \pm 0.03) \times 10^{-5}$	5.40%
Concrete and Lead at 35cm	$(4.56\pm 0.21)\times 10^{-5}$	$(7.89 \pm 0.31) imes 10^{-7}$	1.73%	$(1.24 \pm 0.02) \times 10^{-3}$	$(7.89 \pm 0.03) \times 10^{-5}$	6.36%

Note: Inclusion of electron, positron, pion, and (anti) Muon (hit.pid==11, -11, 211, -211, 13, -13)

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Concrete and Lead at 16cm	$(4.89 \pm 0.28) \times 10^{-5}$	$(4.63 \pm 0.08) \times 10^{-6}$	9.47%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Concrete and Lead at 21cm	$(2.37 \pm 0.19) imes 10^{-5}$	$(4.69 \pm 0.08) imes 10^{-6}$	19.79%	$(1.55 \pm 0.02) imes 10^{-3}$	$(7.46 \pm 0.03) imes 10^{-5}$	4.81%
Concrete and Lead at 26cm	$(1.69 \pm 0.12) imes 10^{-5}$	$(4.70 \pm 0.08) imes 10^{-6}$	27.81%	$(1.43 \pm 0.03) \times 10^{-3}$	$(7.43 \pm 0.03) imes 10^{-5}$	5.20%
Concrete and Lead at 30cm	$(1.76 \pm 0.16) \times 10^{-5}$	$(4.66 \pm 0.08) \times 10^{-6}$	26.48%	$(1.36 \pm 0.02) \times 10^{-3}$	$(7.34 \pm 0.03) imes 10^{-5}$	5.40%
Concrete and Lead at 35cm	$(1.09 \pm 0.09) \times 10^{-5}$	$(4.81 \pm 0.08) \times 10^{-6}$	44.13%	$(1.24 \pm 0.02) imes 10^{-3}$	$(7.89 \pm 0.03) imes 10^{-5}$	6.36%

Changing the radial and longitudinal thickness of Concrete and Lead and shifting Lucite inward

sqrt(hit.vx**2+hit.vy**2):hit.vz

- ✓ Concrete/lead radius extend 16, 21, 26, 30, 35 cm
- \checkmark Shift Lucite inward and make it shorter (7, 6 and 5 cm)
- ✓ Keep lead at 16 cm, extend concrete only to 26 cm
- Fix downstream face of donut, then reduce lead thickness

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Radial thickness of Concrete and Lead at 16cm -7cm Lucite	$(1.12\pm0.04) imes10^{-4}$	$(7.93 \pm 0.30) imes 10^{-7}$	0.71%	$(1.96 \pm 0.03) imes 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Radial thickness of Concrete and Lead at 16cm – Shifted 6cm Lucite	$(1.04 \pm 0.04) \times 10^{-4}$	$(6.88 \pm 0.29) imes 10^{-7}$	0.66%	$(1.88 \pm 0.03) \times 10^{-3}$	$(7.63 \pm 0.03) \times 10^{-5}$	4.06%
Radial thickness of Concrete and Lead at 16cm – Shifted 5cm Lucite	$(1.36 \pm 0.20) \times 10^{-4}$	$(6.45 \pm 0.28) imes 10^{-7}$	0.47%	$(1.65 \pm 0.04) \times 10^{-3}$	$(6.75 \pm 0.03) \times 10^{-5}$	4.09%

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Radial thickness of Concrete and Lead at 16cm -7cm Lucite	$(4.89 \pm 0.28) \times 10^{-5}$	$(4.63 \pm 0.08) imes 10^{-6}$	9.47%	$(1.96 \pm 0.03) imes 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Radial thickness of Concrete and Lead at 16cm –Shifted 6cm Lucite	$(3.79 \pm 0.20) \times 10^{-5}$	$(4.20 \pm 0.08) imes 10^{-6}$	11.08%	$(1.88 \pm 0.03) imes 10^{-3}$	$(7.63 \pm 0.03) \times 10^{-5}$	4.06%
Radial thickness of Concrete and Lead at 16cm –Shifted 5cm Lucite	$(3.60 \pm 0.63) \times 10^{-5}$	$(3.56 \pm 0.07) imes 10^{-6}$	9.89%	$(1.65 \pm 0.04) imes 10^{-3}$	$(6.75 \pm 0.03) imes 10^{-5}$	4.09%

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Radial thickness of Concrete and Lead at 16cm -7cm Lucite	$(1.12\pm 0.04)\times 10^{-4}$	$(7.93 \pm 0.30) imes 10^{-7}$	0.71%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Radial thickness of Concrete and Lead at 16cm – Shifted 6cm Lucite	$(1.04\pm 0.04)\times 10^{-4}$	$(6.88 \pm 0.29) imes 10^{-7}$	0.66%	$(1.88 \pm 0.03) \times 10^{-3}$	$(7.63 \pm 0.03) \times 10^{-5}$	4.06%
Radial thickness of Concrete and Lead at 26cm – 7cm Lucite	$(6.10 \pm 0.38) imes 10^{-5}$	$(7.30 \pm 0.29) \times 10^{-7}$	1.20%	$(1.43 \pm 0.03) imes 10^{-3}$	$(7.43 \pm 0.03) \times 10^{-5}$	5.20%
Radial thickness of Concrete and Lead at 26cm – Shifted 6cm Lucite	$(6.02 \pm 0.35) imes 10^{-5}$	$(7.09 \pm 0.29) \times 10^{-7}$	1.18%	$(1.31 \pm 0.02) \times 10^{-3}$	$(7.72 \pm 0.03) \times 10^{-5}$	5.89%

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Radial thickness of Concrete and Lead at 16cm -7cm Lucite	$(4.89 \pm 0.28) \times 10^{-5}$	$(4.63 \pm 0.08) imes 10^{-6}$	9.47%	$(1.96 \pm 0.03) imes 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Radial thickness of Concrete and Lead at 16cm –Shifted 6cm Lucite	$(3.79 \pm 0.20) \times 10^{-5}$	$(4.20 \pm 0.08) imes 10^{-6}$	11.08%	$(1.88 \pm 0.03) imes 10^{-3}$	$(7.63 \pm 0.03) imes 10^{-5}$	4.06%
Radial thickness of Concrete and Lead at 26cm –7cm Lucite	$(1.69\pm 0.12)\times 10^{-5}$	$(4.70 \pm 0.08) imes 10^{-6}$	27.81%	$(1.43 \pm 0.03) imes 10^{-3}$	$(7.43 \pm 0.03) \times 10^{-5}$	5.20%
Radial thickness of Concrete and Lead at 26cm –Shifted 6cm Lucite	$(1.58\pm 0.11)\times 10^{-5}$	$(4.28 \pm 0.08) imes 10^{-6}$	27.08%	$(1.31 \pm 0.02) imes 10^{-3}$	$(7.72 \pm 0.03) \times 10^{-5}$	5.89%

Changing the radial and longitudinal thickness of Concrete and Lead and shifting Lucite inward

- Concrete/lead radius extend 16, 21, 26, 30, 35 cm
 Shift Lucite inward and make it shorter (7, 6 and 5 cm)
- ✓ Keep lead at 16 cm, extend concrete only to 26 cm
- ✓ Fix downstream face of donut, then reduce lead thickness

Different radial and longitudinal thickness of Concrete and Lead

sqrt(hit.vx**2+hit.vy**2):hit.vz

sqrt(hit.vx**2+hit.vy**2):hit.vz

Radial thickness of Concrete = 26cm Radial thickness of Lead = 16cm Iongitudinal thickness of Concrete and Lead = 20cm Radial thickness of Concrete and Lead = 26cm longitudinal thickness of Concrete = 20cm longitudinal thickness of Lead = 10cm

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
R-T of Concrete and Lead at 26cm	$(6.10 \pm 0.38) imes 10^{-5}$	$(7.30 \pm 0.29) imes 10^{-7}$	1.20%	$(1.43 \pm 0.03) imes 10^{-3}$	$(7.43 \pm 0.03) \times 10^{-5}$	5.20%
R-T of concrete at 26 cm and Lead at 16 cm	$(1.49 \pm 0.24) \times 10^{-4}$	$(7.72 \pm 0.30) \times 10^{-7}$	0.52%	$(2.08 \pm 0.04) imes 10^{-3}$	$(7.82 \pm 0.03) \times 10^{-5}$	3.76%
L-T of Concrete at 20cm and Lead at 10cm (R-T at 26)	$(9.64 \pm 1.06) \times 10^{-5}$	$(1.04 \pm 0.04) imes 10^{-6}$	1.08%	$(1.92 \pm 0.04) imes 10^{-3}$	$(1.003 \pm 0.004) imes 10^{-4}$	5.20%

Comparison of rates at the Lucite and PMT for 5,000,000 events (High energy particles, hit.p>2*MeV)

R-T of Concrete and Lead at 26cm $(1.69 \pm 0.12) \times 10^{-5}$ $(4.70 \pm 0.08) \times 10^{-6}$ 27.81% (1.43)		
	$\pm 0.03) \times 10^{-3}$ (7.43 ± 0.0	$(03) \times 10^{-5}$ 5.20%
R-T of concrete at 26 cm and Lead at 16 cm $(5.73 \pm 0.56) \times 10^{-5}$ $(4.78 \pm 0.08) \times 10^{-6}$ 8.34% (2.08)	$\pm 0.04) \times 10^{-3}$ (7.82 ± 0.0	$(03) \times 10^{-5}$ 3.76%
L-T of Concrete at 20cm and Lead at 10cm (R-T at 26) $(2.61 \pm 0.18) \times 10^{-5}$ $(6.33 \pm 0.09) \times 10^{-6}$ 24.25% $(1.92 \pm 0.09) \times 10^{-6}$	$\pm 0.04) \times 10^{-3}$ (1.003 ± 0.0	$(004) \times 10^{-4}$ 5.20%

R-T : Radial thickness L-T : Longitudinal thickness

Changing the aluminum thickness in the Showermax wall

Aluminum thickness should be 20 mil thick, or 0.5 mm

Line 129 in showermaxgen.py should have x1 set to thick_mirror_box_bot instead of ..._tungstenquartz

out+="\t<trd name=\"solid_mirror_box_top_1\" lunit=\"mm\" xl=\""+str(thick_mirror_box_bot+2*thick_wall_mirror_box_tungstenquartz)+"\" x2=\""+str(thick_mirror_box_top+>
out+="\t<trd name=\"solid_mirror_box_top_2\" lunit=\"mm\" xl=\""+str(thick_mirror_box_bot)+"\" x2=\""+str(thick_mirror_box_top)+"\" yl=\""+str(width_mirror_box_tungst

The origin location of all the secondaries anywhere for 5,000,000 events

(16 cm concrete and upstream Lead - 7cmLucite)

T->Draw("sqrt(hit.vx**2+hit.vy**2):hit.vz>>h1(100,23800,26000,100,600,2200)")

The origin location of all the secondaries anywhere for 5,000,000 events

(16 cm concrete and upstream Lead - 7cmLucite)

T->Draw("sqrt(hit.vx**2+hit.vy**2):hit.vz>>h1(100,23800,26000,100,600,2200)")

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photons from electrons	Rate of photons from pions	Pi/e
Showermax with aluminum thickness=3.302 mm	$(1.12 \pm 0.04) \times 10^{-4}$	$(7.93 \pm 0.30) imes 10^{-7}$	0.71%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Showermax with aluminum thickness=0.5 mm	$(1.26 \pm 0.07) imes 10^{-4}$	$(7.69 \pm 0.30) imes 10^{-7}$	0.61%	$(2.07 \pm 0.03) imes 10^{-3}$	$(7.10 \pm 0.03) \times 10^{-5}$	3.42%

Comparison of rates at the Lucite for 5,000,000 events (High energy particles, hit.p>2*MeV)

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photons from electrons	Rate of photons from pions	Pi/e
Showermax with aluminum thickness=3.302 mm	$(4.89 \pm 0.28) \times 10^{-5}$	$(4.63 \pm 0.08) \times 10^{-6}$	9.47%	$(1.96 \pm 0.03) imes 10^{-3}$	$(7.54 \pm 0.03) \times 10^{-5}$	3.85%
Showermax with aluminum thickness=0.5 mm	$(5.17 \pm 0.40) imes 10^{-5}$	$(4.41 \pm 0.08) \times 10^{-6}$	8.53%	$(2.07 \pm 0.03) imes 10^{-3}$	$(7.09 \pm 0.03) imes 10^{-5}$	3.42%

T->Draw("1","(rate/5.95e13)*(hit.det==8001 && hit.p<2*MeV && (hit.pid==11 || hit.pid==-11 || hit.pid==211 || hit.pid==-211 || hit.pid==-13 || hit.pid==-13))")

T->Draw("1","(rate/5.95e13)*(hit.det==8000)")

Note: 5.95e13 comes from $85*14*10^{9*50}$ to be in the unit of *GH z/µ A/Detector*/simulation

Changing the Lead donut support thickness

- <!-- Donut top support -->
- <quantity name="donutTopSupportThickness"
- + <quantity name="donutTopSupportThickness" type="length" value="0.01" unit="in"/>
 <quantity name="donutTopSupportWidth" type="length" value="1524.000" unit="mm"/>
 <quantity name="donutTopSupportOuterRibDistance" type="length" value="1397.000" unit="mm"/>
 <quantity name="donutTopSupportInnerRibDistance" type="length" value="705.033" unit="mm"/>
 - <!-- Donut bottom support -->
- <quantity name="donutBotSupportThickness"</p>
- + <quantity name="donutBotSupportThickness" type="length" value="0.01" unit="in"/>
 <quantity name="donutBotSupportWidth" type="length" value="1828.800" unit="mm"/>
 <quantity name="donutBotSupportOuterRibDistance" type="length" value="1701.800" unit="mm"/>
 <quantity name="donutBotSupportInnerRibDistance" type="length" value="841.685" unit="mm"/>
- type="length" value="0.75" unit="in"/>
 type="length" value="0.01" unit="in"/>

type="length" value="0.75" unit="in"/>

The origin location of all the secondaries anywhere for 5,000,000 events

(16 cm concrete and upstream Lead - 7cmLucite)

T->Draw("sqrt(hit.vx**2+hit.vy**2):hit.vz>>h1(100,23800,26000,100,600,2200)")

The origin location of all the secondaries anywhere for 5,000,000 events

(16 cm concrete and upstream Lead - 7cmLucite)

Moller

sqrt(hit.vx**2+hit.vy**2):hit.vz

Pion

T->Draw("sqrt(hit.vx**2+hit.vy**2):hit.vz>>h1(100,23800,26000,100,600,2200)")

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photons from electrons	Rate of photons from pions	Pi/e
Donut Top/Bot SupportThickness = 0.75 in	$(1.12\pm 0.04)\times 10^{-4}$	$(7.93 \pm 0.30) \times 10^{-7}$	0.71%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) \times 10^{-5}$	3.85%
Donut Top/Bot SupportThickness = 0.01 in	$(1.22 \pm 0.03) imes 10^{-4}$	$(7.24 \pm 0.30) imes 10^{-7}$	0.59%	$(2.03 \pm 0.03) imes 10^{-3}$	$(7.52 \pm 0.03) \times 10^{-5}$	3.70%s

Comparison of rates at the Lucite for 5,000,000 events (High energy particles, hit.p>2*MeV)

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photons from electrons	Rate of photons from pions	Pi/e
Showermax with aluminum thickness=3.302 mm	$(4.89 \pm 0.28) \times 10^{-5}$	$(4.63 \pm 0.08) \times 10^{-6}$	9.47%	$(1.96 \pm 0.03) \times 10^{-3}$	$(7.54 \pm 0.03) imes 10^{-5}$	3.85%
Showermax with aluminum thickness=0.5 mm	$(5.21 \pm 0.67) imes 10^{-5}$	$(4.65 \pm 0.08) imes 10^{-6}$	8.93%	$(2.03 \pm 0.03) imes 10^{-3}$	$(7.52 \pm 0.03) \times 10^{-5}$	3.70%

T->Draw("1","(rate/5.95e13)*(hit.det==8001 && hit.p<2*MeV && (hit.pid==11 || hit.pid==-11 || hit.pid==211 || hit.pid==-211 || hit.pid==13 || hit.pid==-13))")

T->Draw("1","(rate/5.95e13)*(hit.det==8000)")

Note: 5.95e13 comes from $85*14*10^{9*50}$ to be in the unit of *GH z/µ A/Detector*/simulation

