Higher difference in rate between Pions and electrons In different geometry of the Lead donut

The MOLLER Project Measurement Of a Lepton Lepton Electroweak Reaction

Elham Gorgannejad

Dr. Wouter Deconinck

March, 2021

Presentation Outline

✓ Geometry of Pion Detector system

✓ Original geometry vs the new geometry

✓ Problems with the new geometry

✓ Approaches for resolving the problems

✓ Results

✓ Future works

Pion Detector geometry

Pion Detector geometry

Original geometry of Pion detector system

Original geometry of Pion detector system

New geometry of Pion detector system

sqrt(hit.vx**2+hit.vy**2):hit.vz {rate*(hit.det==8001 && hit.trid>2)}

New geometry vs original geometry

Problem with the new geometry

Rate of detected Pions Rate of detected electrons ~ 10

 $\frac{\text{Rate of detected photoelectrons from Pions}}{\text{Rate of detected photoelectrons from electrons}} \sim 0.1$

New geometry with shielding (downstream shielding and inner radial shielding)

Comparison of rates at the Lucite for 5,000,000 events

(Low energy particles, hit.p<2*MeV)

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Without shielding	$(2.73 \pm 0.01) \times 10^{-3}$	$(2.89 \pm 0.06) imes 10^{-6}$	0.11%	$(2.200 \pm 0.003) \times 10^{-2}$	$(5.424 \pm 0.008) \times 10^{-4}$	2.47%
With downstream(DS) shielding	$(2.08 \pm 0.01) \times 10^{-3}$	$(4.74 \pm 0.07) imes 10^{-6}$	0.23%	$(2.087 \pm 0.004) \times 10^{-2}$	$(5.800 \pm 0.008) \times 10^{-4}$	2.78%
With DS and inner radial shielding	$(8.21 \pm 0.09) imes 10^{-4}$	$(5.10 \pm 0.08) imes 10^{-6}$	0.62%	$(1.235\pm 0.003)\times 10^{-2}$	$(5.743 \pm 0.008) \times 10^{-4}$	4.62%

(High energy particles, hit.p>2*MeV)

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Without shielding	$(5.52 \pm 0.06) \times 10^{-4}$	$(2.69 \pm 0.02) \times 10^{-5}$	4.87%	$(2.200 \pm 0.003) \times 10^{-2}$	$(5.424 \pm 0.008) \times 10^{-4}$	2.46%
With downstream(DS) shielding	$(5.14 \pm 0.06) \times 10^{-4}$	$(2.80 \pm 0.02) imes 10^{-5}$	5.45%	$(2.087 \pm 0.004) \times 10^{-2}$	$(5.800 \pm 0.008) \times 10^{-4}$	2.78%
With DS and inner radial shielding	$(1.66 \pm 0.04) \times 10^{-4}$	$(2.79 \pm 0.02) \times 10^{-5}$	16.80%	$(1.235 \pm 0.003) \times 10^{-2}$	$(5.743 \pm 0.008) \times 10^{-4}$	4.65%

Note: Inclusion of electron, positron, pion, and (anti) Muon (hit.pid==11, -11, 211, -211, 13, -13)

Comparison of hits at the Lucite plane for 5,000,000 events

(without shielding)

h 1200_C 4001 Entries Mean x 2.487e+04 1190 Mean y 1147 Std Dev x 8.611 1180 Std Dev y 31.13 -25 1170 1160 -20 1150 15 1140 10 1130 5 1120 1110 24855 24860 24865 24870 24875 24880 24885

(with inner radial shielding)

Changing the radial and longitudinal thickness of Concrete and Lead

- ✓ Concrete/lead radius extend 16, 21, 26, 30, 35 cm
- ✓ Keep concrete at 16 cm, extend lead only to 26 cm
- ✓ Keep lead at 16 cm, extend concrete only to 26 cm
- Fix downstream face of donut, then reduce lead thickness

The origin location of all the secondaries anywhere for 5,000,000 events

Moller

Pion

sqrt(hit.vx**2+hit.vy**2):hit.vz

Comparison of rates at the Lucite for 5,000,000 events (Low energy particles, hit.p<2*MeV)

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Concrete and Lead at 16cm	$(1.21 \pm 0.01) \times 10^{-3}$	$(5.76 \pm 0.08) imes 10^{-6}$	0.48%	$(2.134 \pm 0.006) imes 10^{-2}$	$(5.087 \pm 0.008) imes 10^{-4}$	2.38%
Concrete and Lead at 21cm	$(4.84 \pm 0.08) imes 10^{-4}$	$(5.86 \pm 0.08) imes 10^{-6}$	1.21%	$(9.26 \pm 0.03) imes 10^{-3}$	$(5.092 \pm 0.008) imes 10^{-4}$	5.50%
Concrete and Lead at 26cm	$(2.34 \pm 0.05) imes 10^{-4}$	$(6.13 \pm 0.08) imes 10^{-6}$	2.62%	$(6.18 \pm 0.02) imes 10^{-3}$	$(5.059 \pm 0.008) imes 10^{-4}$	8.18%
Concrete and Lead at 30cm	$(1.70 \pm 0.04) \times 10^{-4}$	$(6.05 \pm 0.08) imes 10^{-6}$	3.56%	$(4.60 \pm 0.02) imes 10^{-3}$	$(5.149 \pm 0.008) imes 10^{-4}$	11.19%
Concrete and Lead at 35cm	$(1.56 \pm 0.03) \times 10^{-4}$	$(6.24 \pm 0.09) \times 10^{-6}$	4%	$(3.25 \pm 0.02) imes 10^{-3}$	$(5.179 \pm 0.008) imes 10^{-4}$	15.93%

Comparison of rates at the Lucite for 5,000,000 events (Low energy particles, hit.p<2*MeV)

Comparison of rates at the Lucite for 5,000,000 events (High energy particles, hit.p>2*MeV)

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
Concrete and Lead at 16cm	$(1.28 \pm 0.02) imes 10^{-3}$	$(1.543 \pm 0.005) imes 10^{-4}$	12.05%	$(2.134 \pm 0.006) imes 10^{-2}$	$(5.087 \pm 0.008) imes 10^{-4}$	2.38%
Concrete and Lead at 21cm	$(1.59 \pm 0.05) \times 10^{-4}$	$(1.587 \pm 0.005) imes 10^{-4}$	99.8%	$(9.26 \pm 0.03) imes 10^{-3}$	$(5.092 \pm 0.008) imes 10^{-4}$	5.50%
Concrete and Lead at 26cm	$(6.22 \pm 0.28) \times 10^{-5}$	$(1.626 \pm 0.005) imes 10^{-4}$	261%	$(6.18 \pm 0.02) imes 10^{-3}$	$(5.059 \pm 0.008) imes 10^{-4}$	8.1%
Concrete and Lead at 30cm	$(4.59\pm 0.19)\times 10^{-5}$	$(1.581 \pm 0.005) imes 10^{-4}$	344%	$(4.60 \pm 0.02) imes 10^{-3}$	$(5.149 \pm 0.008) imes 10^{-4}$	11.19%
Concrete and Lead at 35cm	$(3.69 \pm 0.15) imes 10^{-5}$	$(1.567 \pm 0.005) imes 10^{-4}$	424%	$(3.25\pm0.02) imes10^{-3}$	$(5.179 \pm 0.008) imes 10^{-4}$	15.93%

Comparison of rates at the Lucite for 5,000,000 events (High energy particles, hit.p>2*MeV)

Comparison of rates at the Lucite for 5,000,000 events (Low energy particles, hit.p<2*MeV)

Rates GH z/μ A /Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
R-T of Concrete and Lead at 26cm	$(2.34 \pm 0.05) imes 10^{-4}$	$(6.13 \pm 0.08) \times 10^{-6}$	2.62%	$(6.18 \pm 0.02) imes 10^{-3}$	$(5.059 \pm 0.008) imes 10^{-4}$	8.18%
R-T of concrete at 16 cm and Lead at 26 cm	$(2.90\pm 0.05)\times 10^{-4}$	$(6.01 \pm 0.08) imes 10^{-6}$	2.07%	$(7.74 \pm 0.02) imes 10^{-3}$	$(5.135\pm0.008)\times10^{-4}$	6.63%
R-T of concrete at 26 cm and Lead at 16 cm	$(1.90 \pm 0.01) \times 10^{-3}$	$(5.98 \pm 0.08) imes 10^{-6}$	0.31%	$(3.120 \pm 0.006) \times 10^{-2}$	$(5.111 \pm 0.008) imes 10^{-4}$	1.64%
L-T of Concrete at 30cm and Lead at 10cm (R-T at 26)	$(1.36 \pm 0.01) \times 10^{-3}$	$(8.29\pm 0.10)\times 10^{-6}$	0.61%	$(2.785 \pm 0.005) imes 10^{-2}$	$(6.919 \pm 0.009) imes 10^{-4}$	2.48%
R-T of Concrete and Lead at 16cm	$(1.21 \pm 0.01) \times 10^{-3}$	$(5.76 \pm 0.08) \times 10^{-6}$	0.48%	$(2.134 \pm 0.006) imes 10^{-2}$	$(5.087 \pm 0.008) imes 10^{-4}$	2.38%
L-T of Concrete at 20cm and Lead at 10cm (R-T at 16)	$(3.22 \pm 0.02) \times 10^{-3}$	$(8.83 \pm 0.10) imes 10^{-6}$	0.27%	$(5.720 \pm 0.708) imes 10^{-2}$	$(7.336 \pm 0.009) \times 10^{-4}$	1.28%

R-T : Radial thickness L-T : Longitudinal thickness

Comparison of rates at the Lucite for 5,000,000 events (High energy particles, hit.p>2*MeV)

Rates GH z/μ A/Detector	Rate of electrons	Rate of pions	Pi/e	Rate of photoelectrons from electrons	Rate of photoelectrons from pions	Pi/e
R-T of Concrete and Lead at 26cm	$(6.22 \pm 0.28) \times 10^{-5}$	$(1.626 \pm 0.005) imes 10^{-4}$	261%	$(6.18 \pm 0.02) imes 10^{-3}$	$(5.059 \pm 0.008) imes 10^{-4}$	8.18%
R-T of concrete at 16 cm and Lead at 26 cm	$(8.07 \pm 0.30) imes 10^{-5}$	$(1.572 \pm 0.005) imes 10^{-4}$	195%	$(7.74 \pm 0.02) imes 10^{-3}$	$(5.078 \pm 0.008) imes 10^{-4}$	6.56%
R-T of concrete at 26 cm and Lead at 16 cm	$(2.10 \pm 0.02) \times 10^{-3}$	$(1.620 \pm 0.005) imes 10^{-4}$	7.71%	$(3.120 \pm 0.006) \times 10^{-2}$	$(5.212 \pm 0.008) imes 10^{-4}$	1.67%
L-T of Concrete at 30cm and Lead at 10cm (R-T at 26)	$(2.83 \pm 0.02) \times 10^{-3}$	$(2.678 \pm 0.006) \times 10^{-4}$	9.46%	$(5.720 \pm 0.708) imes 10^{-2}$	$(7.336 \pm 0.009) \times 10^{-4}$	1.28%
R-T of Concrete and Lead at 16cm	$(1.28 \pm 0.02) \times 10^{-3}$	$(1.543 \pm 0.005) imes 10^{-4}$	12.05%	$(2.134 \pm 0.006) imes 10^{-2}$	$(5.087 \pm 0.008) imes 10^{-4}$	2.38%
L-T of Concrete at 20cm and Lead at 10cm (R-T at 16)	$(6.16 \pm 0.07) imes 10^{-3}$	$(2.189\pm0.005)\times10^{-4}$	3.55%	$(2.785\pm 0.005)\times 10^{-2}$	$(6.919 \pm 0.009) imes 10^{-4}$	2.48%

R-T : Radial thickness L-T : Longitudinal thickness

Results

- ✓ New geometry avoids showermax secondaries into lucite in other sectors
- ✓ Shielding removes low energy particles that are hitting the Lucite when moving backwards
- ✓ Rate of electrons goes down as radial size of the donut is increased
- ✓ When changing the radial thickness of concrete and lead independently, the lead has a much larger impact
- ✓ When changing the longitudinal thickness of concrete and lead independently, the lead has a larger impact

- 1- Shifting Lucite inward to avoid hitting at the edges
- 2- Replace the donut by a wall with a hole in simulation
- 3- Run visualization for Moller generator events that cause light to reach the pion detector PMT
- 4- Increasing the dimensions of the shielding
- 5- Change the air to vacuum and see how much scattering of air direct secondaries from the

showermax back into the top of Lucite detector

