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1 Introduction

This document is an introduction of the contamination background study for
Moller project. The primary goal is to extract the Moller asymmetry pro-
jections considering all the backgrounds (ep-elastic, ep-inelastic, eAl-elastic,
eAl-inelastic) 1and check how the error is affected by the backgrounds. As one
can see from Moller MIE figure 15 and figure 20, the asymmetries measured in
all the rings are the combinations of all the processes, although the yield con-
tamination of ep-inelastic is small in rings 1 to 3, the asymmetry contributions
are significant.

2 Formalism

In practice, the data were collected by quartz binning on radial and azimuthal
two dimensions, see figure 17 of Moller MIE. Hence, for each quartz or (r,φ)
bin, we have 5 components, Nee, Nep−elastic, Nep−inelastic, NeAl−elastic, NeAl−inelastic at
yield level as well as their corresponding asymmetries, Aee, Aep−elastic, Aep−inelastic,
AeAl−elastic, AeAl−inelastic. For each (r,φ) bin, we have
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where Ntotal = Nee + Nep−elastic + Nep−inelastic + NeAl−elastic + NeAl−inelastic. The yield
of different components in different (r,φ) bins can be obtained from simula-
tion. The asymmetries in different (r,φ) bins can be obtained from kinematical
evolution from the certain (r0,φ0) bin which we would like to extract the final
asymmetries.

In practice, we havemanymeasurementsAmeasured depending on the number
of quartz, andwant to extract 5 asymmetries in the concerned (r0, φ0) bin. Then
we can form a χ2 to extract the asymmetries as well as the error matrix for the
asymmetries. In ith (r,φ) bin, we have
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1I am only looking at the ep and eAl background.
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where i is the ith quartz, Ai
m is the measured asymmetry containing all the

components, Ai
ee is a function of the Aee asymmetry we want to extract in the

certain (r0,φ0) bin, already scaled by kinematical evolution 2. f is the yield ratio
in formula 1.

The χ2 is formed as
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The first order of differential to the χ2 yields the functions to calculate the
value of asymmetries. The second order of differential yields the inversed error
matrix. Our concern is about the error matrix, the element of the inversed error
matrix is (using Aee as an example):
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Therefore, the inversed error matrix F is 3
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The F−1 gives matrix of the errors for all the components as well as their
correlations in the (r0, φ0) bin. The diagonal terms are the final σ2 of all the
asymmetries.

3 Extraction of the Moller asymmetry

There are two scenarios to extract the Moller asymmetry. The first one is to
do an “overall analysis” using the data from all the quartz detectors. Since
we assume that the asymmetries between different (r,φ) bins can be connected
by kinematic evolution. Thus, we have 18 independent measurements (Am) to
extract all the asymmetries in a concerned (r0,φ0) bin. We don’t need to worry
about the contaminations in this scenario, all the asymmetries as well as their
uncertainties and correlations are extracted simultaneously.

The second scenario is that we only look at the data in a certain (r0,φ0) bin.
The Moller asymmetry can be obtained by

Aee =
Ntot

Nee
Am −

Nep elastic

Nee
Aep elastic −

Nep inelastic

Nee
Aep inelastic − ... (6)

2This can be realized in the current generator.
3Here, fi already includes the kinematical evolution factors.
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The corrections due to contaminations should be performed. The uncertainties
of asymmetries on the right side of the equation 6 contribute to the final uncer-
tainty of the Moller asymmetry. The final statistical uncertainty for the Moller
asymmetry is

Ntot

Nee
σAm
, (7)

the systematic uncertainty due to ep elastic process is from the uncertainty of
Aep elastic, i.e.

Nep elastic

Nee
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, (8)

the systematic uncertainty due to ep in-elastic process is from the uncertainty
of Aep inelastic, i.e.

Nep inelastic

Nee
σAep inelastic

. (9)

The uncertainties, σAep elastic
, σAep inelastic

etc., are from the “overall analysis”. This
will take advantage of the statistics of the experiment, hence minimize the
systematic uncertainties.

3.1 First scenario

For the current study, only Moller, ep-elastic, ep-inelastic processes are in-
cluded. The following tables summarized the projections from the “overall
analysis” by changing the concerned (r0,φ0) bins. Table 1, 2, 3 show the dif-
ferent results 4 by selecting the open, transition, closed sectors in ring 5 as the
concerned bin. By comparing the numbers among the tables, the projections in

different bins are different, but the δAA are the same. These results are extracted
using the same set of data, the ”evolution factors” affect the error projections

in different bins, but the δAA , which should be fixed 5, presents the analyzing
power of the data taking.

Physics processes Expected asymmetry (ppb) Projections (ppb) δA
A

δ
Q
e(p)
W

Q
e(p)

W

Moller 35.2 0.624 1.77% 1.77%
ep-elastic 16.02 0.653 4.08% 4.08%
ep-inelastic 405.46 12.14 2.99% No modeling

Table 1: The “overall analysis” of the projections, the concerned (r0,φ0) bin is
selected as ring 5, open sector.

4Beam time: 235 + 95 + 14 days. Pol=80%.
5It is a fixed number by selecting any (r,φ) bin as the concerned bin in the “overall analysis”.
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Physics processes Expected asymmetry (ppb) Projections (ppb) δA
A

δ
Q
e(p)
W

Q
e(p)

W

Moller 33.96 0.602 1.77% 1.77 %
ep-elastic 18.49 0.753 4.08% 4.08%
ep-inelastic 596.21 17.85 2.99% No modeling

Table 2: The “overall analysis” of the projections, the concerned (r0,φ0) bin is
selected as ring 5, transition sector.

Physics processes Expected asymmetry (ppb) Projections (ppb) δA
A

δ
Q
e(p)
W

Q
e(p)

W

Moller 30.55 0.542 1.77% 1.77%
ep-elastic 15.97 0.651 4.08% 4.08 %
ep-inelastic 883.87 26.46 2.99% No modeling

Table 3: The “overall analysis” of the projections, the concerned (r0,φ0) bin is
selected as ring 5, closed sector.

3.2 Second scenario

Table 4, 5, 6 show the results using the second scenario, in which the contam-
inations in each quartz are corrected. The statistical uncertainty is calculated
from equation 7, the systematic uncertainties are calculated using equations 8,
9.

Physics processes Projections (ppb) Normalized to 33 ppb
Moller 0.907 2.7%

sys due to ep-elastic 0.096 0.29%
sys due to ep-inelastic 0.048 0.15%

Table 4: Projections using the second scenario, the data in ring 5, open sector is
used.
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Physics processes Projections (ppb) Normalized to 33 ppb
Moller 0.989 3%

sys due to ep-elastic 0.074 0.22%
sys due to ep-inelastic 0.04 0.12%

Table 5: Projections using the second scenario, the data in ring 5, transition
sector is used.

Physics processes Projections (ppb) Normalized to 33 ppb
Moller 1.6516 5%

sys due to ep-elastic 0.0529 0.16%
sys due to ep-inelastic 0.0446 0.135%

Table 6: Projections using the second scenario, the data in ring 5, closed sector
is used.

5


