Segmented vs. Hybrid Downselect

Juliette Mammei

Hybrid vs. Segmented downstream torus configs

Procedure for testing conductor configs

- JLAB produces conductor config (blocky version of CAD)
- Juliette reads in the conductor, produces map in TOSCA
- Sakib reads map into GEANT4 to run sims/do analysis

Purpose: to check whether reasonable changes to the segmented to improve engineering make a difference to the downselect

1.02.A	Similar to V1.02 with US coils having increased current by 125%, No change to DS coils.	04.10.2020		
1.03	Symmetric coil model. JLab Blocky Model of the <u>segmented</u> modified to match the inside surface of the initial J Mammie blocky model (current density changed, as Juliette M suggested). New US coil design with 125% current compared to JM blocky model	02.03.2020	V1U.2a_V1DSg.3	
V2DHy.1	Downstream Hybrid symmetric model	10.21.2020	V1U.2a V2DHy	Configuration
V2DSg.1a	Downstream Segmented symmetric model with SC1, 2, 3 coils identical to V2DSg.1 and a new SC4 design comprised of two 5 turn single pancake coils.	10.21.2020	V1U.2a_V2DSg.1a	labels
V2DSg.1b	Downstream Segmented symmetric model with SC1, 2, 3 coils identical to V2DSg.land a new SC4 design comprised of two 4 turn single pancake coils.	10.21.2020	V1U.2a_V2DSg.1b	

Simulation Configuration

The field maps are generated in TOSCA with a Biot-Savart calculation (assumes no non-linear materials)

The spacing is:

Radial0.5 mmAzimuthal3 degreesAlong z10 cm

For the downstream torus, the map extends from:

0 < r < 40 cm 4.5 < z < 12.5m Full azimuth

4000

000

6000

z scale 1/10

-400

11000

12000

13000

Comparisons

- From qualitative to quantitative
 - Looking at fields for particular r, theta or z
 - Simulation results at detector plane
 - 1D radial distributions
 - 2D x-y distributions
 - Theta-r distributions
 - Fractional asymmetry plots at detector plane
 - Deconvolution results
 - All with and without primaries
 - Summary with relative uncertainties

×10⁻³ ×10⁻³ 500 y(mm) 500 Default y(mm) 0.35 0.4 400 0.3 300 0.35 300 200 0.25 -0.3 200 100 100 -0.25 0.2 -0.2 0.15 -100-1000.15 -2000.1 -200 2D distributions at -300 0.1 -3000.05 detector plane -4000.05 -400 -500 <u>-</u> -1300 0 -900 -500 -1200 -1100 -1000 -800 -700-6000 -1200 -1100 -1000 -500 Moller: Ring 5 -900 x(mm) -800-700-600 x(mm) V1U.2a_V1DSg.3 V1U.2a_V2DHy Elastic ep: Ring 2 ee+ep+ine rate at detector plane 26.5 m from target [GHz/uA/sep/(5mm) 2] ee+ep+ine rate at detector plane 26.5 m from target [GHz/uA/sep/(5mm)²] $\times 10^{-3}$ 500 y(mm) y(mm) 0.35 Red: Open 0.35 400 **Blue: Closed** 0.3 0.3 300 300 Green: Trans. 200 200 0.25 -0.25 100 100 0.2 -0.2 0.15 -1000.15 -2000.1 -2000.1 -300-300 0.05 -4000.05 -500 -1200 -1100 -1000 -900 -1100 -1000 -900 -800 -700-600-500-500 -1300 0 -1200 x(mm) -800 ²⁰²⁰⁻¹²⁻¹⁵V1U.2a_V1DSg.1a -700-600 -500 CCB Segmented vs. Hybrid 8 x(mm) V1U.2a_V1DSg.1b

Deconvolution

Radial distribution at detector plane 26.5 m from target

f_iA_i distribution at detector plane 26.5 m from target

- Design the detector tiling to use the phi defocussing
- Have different contributions from the different processes
- three W regions for the inelastics
- Fit the simulated total asymmetries in each tile, using the simulated dilutions (fractional rates) to determine the asymmetry of each process
- No significant difference seen

Backups

Deconvolution study summary

		Relative uncertainty							
	Process	V1U.2a_V1DSg3	V1U.2a_V2DHy	V1U.2a_V2DSg.1a	V1U.2a_V2DSg.1b				
s only	Møller	0.0211	0.0210	0.0212	0.0211				
	e-p Elastic	0.0577	0.0560	0.0515	0.0614				
arie	e-p Inelastic (W1)	0.1294	0.1529	0.1249	0.1370				
Prima	e-p Inelastic (W2)	0.0673	0.0681	0.0638	0.0709				
	e-p Inelastic (W3)	0.1706	0.1658	0.1662	0.1742				
ries	Møller	0.0214	0.0214	0.0217	0.0215				
	e-p Elastic	0.0631	0.0618	0.0560	0.0680				
nda	e-p Inelastic (W1)	0.1495	0.1779	0.1413	0.1576				
cor	e-p Inelastic (W2)	0.0804	0.0823	0.0752	0.0876				
Se	e-p Inelastic (W3)	0.2309	0.2279	0.2313	0.2420				
		Segmented	Hybrid	Alternate S	egmented				

- The relative uncertainty on the moller asymmetry is the same between hybrid and segmented
- There is no *significant* difference between the hybrid and segmented from a physics perspective
- a slight preference for the segmented

- Changes for engineering concerns do affect the focal plan distributions
- Adjusting the detector tiling allows us to achieve the same relative uncertainty on the moller asymmetry

Recommend segmented configuration as new baseline

5 process deconvolution (Using only primaries)

Name	Asymmetry	uncert[ppb] re	lative uncer[ppb]	Name	Asymmetry	uncert[ppb] re	lative uncer[ppb]
moller	-34.2891	0.7226	-0.0211	moller	-34,6893	0.7291	-0.0210
epElastic	-21.7975	1.2567	-0.0577	epElastic	-23,8224	1.3331	-0.0560
epInelasticW1	-537,7265	69.5601	-0.1294	epInelasticW1	-565.0421	86.4192	-0.1529
epInelasticW2	-537,9042	36,2037	-0.0673	epInelasticW2	-541,4439	36.8601	-0.0681
epInelasticW3	-447.5959	76.3651	-0,1706	epInelasticW3	-469.0352	77.7575	-0.1658

V1U.2a_V1DSg.3

V1U.2a_V2DHy

Name	Asymmetry	uncert[ppb]	relative uncer[ppb]	Name	Asymmetry	uncert[ppb]	relative uncer[ppb]
moller	-34,6953	0.7339	-0.0212	moller	-34.2668	0.7220	-0.0211
epElastic	-24,0622	1.2393	-0.0515	epElastic	-22,8270	1,4016	-0.0614
epInelasticW1	-581.0825	72.5628	-0.1249	epInelasticW1	-542.3427	74.3137	-0.1370
epInelasticW2	-556.3365	35.4930	-0.0638	epInelasticW2	-536.8306	38.0518	-0.0709
epInelasticW3	-477.5756	79.3916	-0.1662	epInelasticW3	-450,8812	78.5307	-0.1742
I				-1			
2020-12-15			CCB Segmente	ed vs. Hybrid			14

V1U.2a_V2DSg.1a

V1U.2a_V2DSg.1b

5 process deconvolution (including secondaries)

Name	Asymmetry	uncert[ppb]	relative uncer[ppb]	Name	Asymmetry	uncert[ppb] (relative uncer[ppb]
moller	-34,1199	0.7314	-0.0214	moller	-34.5202	0.7396	-0.0214
epElastic	-22.1256	1,3971	-0.0631	epElastic	-23,5685	1.4564	-0.0618
epInelasticW1	-623.6047	93.2303	-0.1495	epInelasticW1	-628.5779	111.8160	-0.1779
epInelasticW2	-607.8443	48.8750	-0.0804	epInelasticW2	-602.9652	49.6308	-0.0823
epInelasticW3	-452.7696	104.5314	-0.2309	epInelasticW3	-472.8495	107.7454	-0.2279

V1U.2a_V1DSg.3

V1U.2a_V2DHy

Name	Asymmetry	uncert[ppb]	relative uncer[ppb]	Name	Asymmetry	uncert[ppb]	relative uncer[ppb]
moller	-34.5291	0.7489	-0.0217	moller	-34.0727	0.7326	-0.0215
epElastic	-23.9641	1.3417	-0.0560	epElastic	-23.0626	1.5689	-0.0680
epInelasticW1	-651.7935	92.1016	-0.1413	epInelasticW1	-615.1191	96,9158	-0.1576
epInelasticW2	-615.7681	46.3195	-0.0752	epInelasticW2	-611.7688	53,6000	-0.0876
epInelasticW3	-481,1127	111.2654	-0.2313	epInelasticW3	-455.2799	110.1924	-0.2420
2020-12-15			CCB Segmente	d vs. Hybrid			15

2020-12-15

V1U.2a_V2DSg.1a

CCB Segmented vs. Hybrid

V1U.2a_V2DSg.1b

Effect of returns

$$\vec{F} = q\vec{v} \times \vec{B} = -\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ v_x & v_y & v_z \\ B_x & B_y & B_z \end{vmatrix} = -(v_z B_x - v_z B_z)\hat{\imath} \\ -(v_z B_y - v_y B_z)\hat{k}$$

In this septant:

 $B_y \sim B_{\varphi}$ Radially focussing

 $B_{\chi} \sim B_r$ Azimuthally focussing

The component of the field that is most different is the z component

- Only applied for a short distance (x10 reduction)
- Only act on v_r component (x100 reduction)
- Is small 10-100x smaller than radial focussing component
 - 1e4 1e5 reduction in strength

2020-12-15

 $v_x, v_v \ll v_z$

Z component of the field

