Geometry Optimization

1. Reducing collimator 2 outer acceptance

• 103-> 101

Cuts to determine radial ranges of detectors in ring 5:

1) Relative ratio of ep/ee <=1

2) FOM=Rate*A^2 (GHz-ppb^2/sep/5mm) >=35 for open and trans, >=10 for closed

		Open	Trans	Closed
103	Cut1	855-1105	890-1105	905-1105
	Cut 2	855-1070	900-1060	915-1055
101	Cut1	850-1110	895-1120	905-1120
	Cut 2	855-1070	900-1060	915-1055

Cut 1: ep/ee ratio

Cut 2: FOM

primary FOM, Ring = 5, Sector = closed, Generator = moller, Part = Quartz

primary FOM, Ring = 5, Sector = open, Generator = moller, Part = Quartz

Ep/ee and integrated FOM for chosen range

		Rate (GHz)	Integrated FOM (GHz- ppb^2)	FOM ratio wrt 103	ep/ee
103	Moller	134.9	144517	1	12%
	Elastic	16.1			
101	Moller	129.5	141289	1.01	12%
	Elastic	15.9			

Consequence of smaller staggered quartz in ring 5

 Use different FOM threshhold for inner and outer edge

		Rate (GHz)	Integrated FOM (GHz- ppb^2)	FOM ratio wrt 103	ep/ee
103	Moller	134.9	144517	1	12%
	Elastic	16.1			
101	Moller	120.0	134394.39	1.04	10%
	Elastic	12.2			

Consequence of smaller uniform quartz in ring 5

		Rate (GHz)	Integrated FOM (GHz- ppb^2)	FOM ratio wrt 103	ep/ee
103	Moller	134.9	144517	1	12%
	Elastic	16.1			
101	Moller	120.1	134848	1.04	11%
	Elastic	13.3			

What happens if beam energy is 10.6 instead of 11 GeV?

		Rate (GHz)	Integrated FOM (GHz- ppb^2)	FOM ratio wrt 11 GeV	ep/ee
10.6 GeV	Moller	133.9	136988.68	1.015	13%
	Elastic	17.5			
11 GeV	Moller	129.5	141289	1	12%
	Elastic	15.9			

2. Toroid Generators

s y=1.01*cm s 1 arm=math.sqrt(math.pow((25.210-24.751),2)+math.pow((789.132-610.832),2))*cm s rad=(6.044+4.866)*cm s theta= math.atan((25.210-24.751)/(789.132-610.832)) len ucoil=2*s rad+s l arm z origin=s rad-len ucoil/

len mother=len ucoil+20

Upstream

Hybrid

Focus in hybrid vs segmented

3. Final Geometry for simulations

