Spectrometer Overview

Juliette Mammei

The Experiment

Outline

- Physics overview
- Results of recent studies
- Install/commission /tests
- Alternatives
- Tolerances
- Further work

Physics Overview

- Full azimuthal acceptance
 - Identical particle scattering
 - Large range of forward-backward scattered electrons
- High energies, forward angles
 - Asymmetry depends on q²
 - Need to understand acceptance
- Relatively focused mollers
 - Small bkgds
 - Dilution and asymmetry

The signal is an asymmetry $A = \frac{Y_+ - Y_-}{Y_+ + Y_-}$ from e- e- scattering

100% Azimuthal Acceptance

Any odd number of coils will work

Initial constraints

- Choose (standard) conductor size/layout that minimizes current density
- Try to use "double pancakes"; as flat as possible
 → several out of plane bends
- Minimum bend radius 5x conductor OD
- Fit within radial, angular acceptances (360°/7 and <360°/14 at larger radius)
- Total current in each inner "cylinder" same as proposal model → as close as possible with integer multiples
- Take into account water cooling hole, insulation
- Need to consider epoxy backfill and aluminum plates/ other supports
 - Radial extent depends on upstream torus and upstream parts of hybrid!!

Keep Out Zones

Keep out zones

Spectrometer (shielding separate)

Collimators and beam shields are designed to provide a 2-bounce system for photons to detectors

Precision alignment; water-cooling

We will require local shielding (mostly due to neutron production) and radiation monitoring

Shape of the field in a septant

 x_{\blacktriangle}

Field components vs. radius

Field components vs. z

Field components vs. azimuthal angle

up (z0 =-75 cm) 5.5 and 15 mrads middle (z0 =0 cm) 6.0 and 17 mrads down (z0 =75 cm) 6.5 and 19 mrads phi=0 only, near magnet

green – eps blue - mollers

up (z0 =-75 cm) 5.5 and 15 mrads middle (z0 =0 cm) 6.0 and 17 mrads down (z0 =75 cm) 6.5 and 19 mrads phi=0 only

green – eps blue - mollers

Back of the envelop calculations (n-dimensional envelop)

- Each segment gives a "kick" at the central z location
- Field integral depends on radius of the track in that segment and the length of the segment
- Radius in a given segment depends on fields of upstream magnet segments
- The radius at the upstream magnet depends on the scattering angle and target z, then iterate

 $\alpha[rad] = \frac{\int \vec{B} \cdot d\vec{\ell} \, [Tm]}{3.33 \, E \, [GeV]}$

- 1. Get $B_{\varphi,i}(r)$ from TOSCA
- 2. Calculate α
- 3. Get r in next segment
 - 4. Drift to detector

Field components

Phase space ee focus vs. eeepsep

eefocus:eeepsep

Exploring the parameter space

Plot field factor of one segment vs. field factor of another segment and weight by the quantity of interest

 $5^6 = 15625$ combinations

B2=1.0 because it is very shallow Reduces the number of plots to show

Dark Blue < epfocus < Red 0 cm < epfocus < 12 cm

epfocus, B0=1.0

March 21-22, 2019

March 21-22, 2019

Recent Sensitivity Studies

- Effect on the optics
 - Simulations almost complete
- Interference with the envelopes
 - Look at clearances in the "slices"
- Beam steering
 - Generate field maps in beampipe
- Dose on coils
 - From both beam steering and coil offsets
- Detector Backgrounds

1D Distributions

Asymmetry vs Radial Offset

High statistics runs with upto-date geometry confirm a tolerance of ±3 mm for the radial offset (tightest tolerance)

Other tolerances are coming out a little tighter than before but the radial offset is still the tightest

Scattered particle envelopes

Scattering particle envelopes

Comparisons between

- Default trapezoidal blocky model
- Rectangle 1 same height as trapezoid, same width as inner radius
- Rectangle 2 Dave's version 10
- Rectangle 3 Dave's version 13

Overall Radial Distribution

Stray Fields

----- r = 4.08 cm

nominal – symmetric

Max vector shown: 150 G

Effect of Offsets on Stray Fields

3mm inward – deflect right

Max vector shown: 150 G

r = 4.08 cm
Effect of Offsets on Stray Fields

3mm outward – deflect left Max vector shown: 150 G ASSAULTINES. L WEITH 670 G 6 303000 - 004 300 G 100 G 0.03 G Opera

r = 4.08 cm

Fourier Decomposition

Fourier Analysis, nominal (symmetric) coils

Fourier Decomposition

Slope of Integral Gradients vs.Offset

Effect on positrons in horizontal band -2 < y <2 cm

-3mm (inward)

Energy Deposited on coils

Energy Deposited (W/uA/cm^2)

Doses on coils' hot spots

Energy Deposited (W/uA/cm^2)

Preliminary Epoxy Dose Estimates

- Hot spot on upstream 6.1x10⁹ Rad
 - 86 mW/cm²
 - Assuming 334 days @ 60 uA
- Rest of the upstream
 - 2x10⁹ Rad
- downstream coils
 - 0.86 mW/cm^2
 - $6.1 \times 10^{7} \text{ Rad}$

Inc. Power(W/uA/mm) vs r (mm) [EH,all]

Inc. Power(W/uA/mm) vs r (mm) [EH,E>1MeV]

Installation, Commissioning and Tests

- Alignment
- Survey mechanically
- Field mapping (zero crossings)
- Tracking to "map" coils
- Find experimental axis
- Run with range of currents in coils (some higher?)
- Run with different beam energies
- Run with different raster sizes for target boiling studies

Background Corrections

Alternatives

- Superconducting magnet
- Number of coils
- Iron in coils

- Different conductor cross-sections
- Segmented coils
- He vs. Air
- Smaller collimator openings

Iron in coils

Comparison to Segmented

 segHybrid_03 produces almost identical distribution to default.

ring 5(default,moller)

 The default sector definitions are shown in figures. Open in red, transition in green and closed in blue.

Sector	Generator	Rate	Fractional Rate	
	inleastic	0.343	0.002	
	elastic	20.087	0.118	
default	moller	150.309	0.880	
	inleastic	0.423	0.002	
	elastic	20.488	0.116	
segmented	moller	155.798	0.882	

Defining Tolerances

- Coil envelopes
 - More sensitive to inner radius
- Particle envelopes (previous slides)
- Summary table (see next slide)

	Physics-driven Requirements	Value or Range	Comments		
		Downstream Torus	Upstream Torus		
1	Envelope for coils, strong backs and supports, relative to the beam line	Z = ±25 mm R= +3 mm / -1 mm φ = 3mm outer radius, 1 mm inner radius	Same as hybrid	Provides limits for fabrication tolerances, assembly tolerances and movement during operation	
2	Material thickness budget in beam or particle path	Nothing in primary beam; Al windows, possibly He	Same as hybrid		
3	Level of vacuum for magnet chambers	1 Torr	1 Torr		
4	Expected total maximum radiation levels	10 ⁸ Rads	10 ⁸ Rads	Dose in epoxy, not on copper/water	
5	Location accuracy of collimator, magnet and beam line centers relative to one another	± 1mm	± 1mm		
6	Magnetic field temporal stability	Power stability = less than 25 ppm over 8 hours ; less 24 hours			
7	Ampere-Turns per coil per magnet	Zone A = 7752 (hybrid) ; Sub-Coil #1 = 8915 (seg) Zone B = 10602 (hybrid) ; Sub-Coil #2 = 12192 (seg) Zone C = 16862 (hybrid) ; Sub-Coil #3 = 19391 (seg) Zone D = 29160 (hybrid) ; Sub-Coil #4 = 33534 (seg)	4286	DS Torus: Segmented design has 15% more AT. Sub-Coil #1 is upstream-most coil	
8	Coils must be no closer than 5X the multiple scattering radius to beam center	40 mm upstream, 50 mm middle	30 mm	To minimize radiation on the coils	
9	Collimator inner and outer diameter machining accuracy	Collimator #2 = ± 200 μm		Coll 2 – acceptance Coll 1 – power deposition	
	Collimator inner and outer diameter position accuracy	± 1 mm			
10	Clearance between coils and particle envelopes	1mm clearance at upstream ends, inner radius and 3mi	m everywhere else		

Further Studies

- Sensitivities
 - Finalize sensitivity, dose studies in report
 - Sensitivity to backgrounds in detectors
 - Check particle transport to dump
 - Power in collimator 1
- Simulate effect of solenoidal field from power connections
- Model epoxy in GEANT4
- Design beampipe

Backup slides

Ring 7 will have quartz detectors after it

Forces

							Total	-20/1 75	0.00	36.99
New CURD2 = 0 Force on horizontal coil (lbs)					TUtar	-2341.73	0.00	50.00		
Segment	Cond. #	Length (cm)	F _x	Fy	Fz			F (lbs)	F (lbs)	F (lbs)
А	4, 5, 6		-1575.89	-427.59	27.04	σ	Innor	E 424 02	7 345 09	1.055,02
В	7, 8, 9		-1120.77	-122.59	69.43		Outer	-5454.05	-7.24E-00	1.05E+02
С	10, 11, 12		-0.96	-5.33	65.79		outer	2030.429	-2.00E-00	-04.7400
D	13, 14, 15		912.52	-72.03	-58.37		returns	-144.155	1./1E-10	10.45104
E	16, 17, 18		87.05	-13.57	31.72	_		-2941.75	0.00	30.88
F	19, 20, 21		60.35	-12.61	23.20					
G	22, 23, 24		370.23	-82.52	-12.93		Total	-1883.92	0.00	-9.34
Н	25, 26, 27		200.05	-42.92	-34.45					
IJ	28, 29		-13.54	-11.31	-84.93	≥		F _x (lbs)	F _v (lbs)	F _z (lbs)
						Ū.	Inner	-4111.14	0.00	119.65
K	30		153.81	-29.25	-6.51	Z	Outer	2013.15	0.00	-30.87
LM	31		-1.07	-0.75	-11.76		returns	214.07	0.00	-98.13
								-1883.92	0.00	-9.34
N	32		87.13	-16.77	-3.69					
0	33		-0.60	-0.42	-6.03					
Q	34		51.79	-10.17	-1.51	L_	Total	-1398.25	-1010.75	-9.66
	Solid vie	u 7 coils				f				
RS	35 🖓		-1.43	-2.19	-8.24	0		F _x (lbs)	F _y (lbs)	F _z (lbs)
							Inner	-3303.59	-710.91	98.03
Х		4	-106.67	-28.75	0.27) Q	Outer	1722.88	-236.92	-28.08
Y	2		-181.23	-48.18	0.47		returns	182.45	-62.92	-79.61
2 - 1		-20 -30 -44	-319.04	-83.80	0.82			-1398.25	-1010.75	-9.66

March 21-22, 2019

Comparisons between

- Default trapezoidal blocky model
- Rectangle 1 same height as trapezoid, same width as inner radius
- Rectangle 2 Dave's version 10
- Rectangle 3 Dave's version 13

Overall Radial Distribution

-500

10-6

60

x(mm)

1000

500

0

ring 5(rectangle_1,moller)

ring 5(default,moller)

up (z0 =-75 cm) 5.5 to 15 mrads middle (z0 =0 cm) 6.0 to 17 mrads down (z0 =75 cm) 6.5 to 19 mrads

> All phi values March 21-22, 2019

Tracks colored by theta from purple to red (low to high)

Sensitivity Studies

- Need to consider the effects of asymmetric coils, misalignments etc. on acceptance
- This could affect our manufacturing tolerances and support structure
- Have created field maps for a single coil misplaced by five steps in:
 - -1° < pitch < 1°
 - -4° < roll < 4°
 - -1° < yaw < 1°</p>
 - -2 < r < 2 cm
 - -10 < z < 10 cm
 - -5° < φ < 5°
- Simulations need to be run and analyzed

Assuming $Q^2 = 4EE'sin^2 \frac{\theta_{lab}}{2}$

The uncertainty on Q^2 is:

$$\delta Q^{2} = \left(\frac{\partial Q^{2}}{\partial E}\right)^{2} (\delta E)^{2} + \left(\frac{\partial Q^{2}}{\partial E'}\right)^{2} (\delta E')^{2} + \left(\frac{\partial Q^{2}}{\partial \theta_{lab}}\right)^{2} (\delta \theta_{lab})^{2}$$

$$\frac{\partial Q^2}{\partial E} = 4E' \sin^2 \frac{\theta_{lab}}{2} \sim 0.001 \,\text{GeV} \qquad \frac{\partial Q^2}{\partial E'} = 4E \sin^2 \frac{\theta_{lab}}{2} \sim 0.001 \,\text{GeV}$$

$$\frac{\partial Q^2}{\partial \theta_{lab}} = 4EE' sin \frac{\theta_{lab}}{2} cos \frac{\theta_{lab}}{2} \sim 1.33 \text{ GeV}^2/\text{rad}$$

$$\frac{\delta Q^2}{1.33 GeV^2/rad} = \delta \theta_{lab} = \frac{(0.005)(.0058 \text{GeV}^2)}{1.33 GeV^2/rad} = 2 \times 10^{-5} rad$$

March 21-22, 2019

Collaboration Meeting

Slopes give, for example, $\frac{\partial A_{raw}}{\partial z}$

Then
$$\delta A_{raw} \left(\frac{\partial A_{raw}}{\partial z}\right)^{-1} = \delta z$$
, the uncertainty in z allowed

What are the relevant δR , δA , $\delta \theta_{lab}$, $\delta \theta_{com}$?

We'll measure a certain rate R and asymmetry A in each septant. We assume the allowable uncertainty on A to be 0.1 ppb

Our ability to determine θ_{lab} in that septant may also be important.

5-fold vs. 7-fold symmetry

- Adjusted width of the azimuthal part of the conductor cross section
- Factor used was (7/5)² (want it all to stay within same radius)
- Some overlaps so not really possible, but close to conductor layout
- Current density adjusted so that there is all the same current along z

50

2577.-0

1.091099E +003

March 21-22, 2019

74

